論文の概要: Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking
- arxiv url: http://arxiv.org/abs/2502.12970v1
- Date: Tue, 18 Feb 2025 15:48:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:02:39.626928
- Title: Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking
- Title(参考訳): Reasoning-to-Defend: 安全に配慮したReasoningは、大規模な言語モデルをジェイルブレイクから守ることができる
- Authors: Junda Zhu, Lingyong Yan, Shuaiqiang Wang, Dawei Yin, Lei Sha,
- Abstract要約: 本稿では,LLM生成プロセスにクエリとレスポンスの安全反射を統合する新しいトレーニングパラダイムであるReasoning-to-Defend(R2D)を提案する。
R2Dは様々な攻撃を効果的に軽減し、全体的な安全性を改善し、LLMのジェイルブレイクに対する堅牢性を強化する上での安全性を意識した推論の可能性を強調している。
- 参考スコア(独自算出の注目度): 26.812138599896997
- License:
- Abstract: The reasoning abilities of Large Language Models (LLMs) have demonstrated remarkable advancement and exceptional performance across diverse domains. However, leveraging these reasoning capabilities to enhance LLM safety against adversarial attacks and jailbreak queries remains largely unexplored. To bridge this gap, we propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates safety reflections of queries and responses into LLMs' generation process, unlocking a safety-aware reasoning mechanism. This approach enables self-evaluation at each reasoning step to create safety pivot tokens as indicators of the response's safety status. Furthermore, in order to improve the learning efficiency of pivot token prediction, we propose Contrastive Pivot Optimization(CPO), which enhances the model's ability to perceive the safety status of dialogues. Through this mechanism, LLMs dynamically adjust their response strategies during reasoning, significantly enhancing their defense capabilities against jailbreak attacks. Extensive experimental results demonstrate that R2D effectively mitigates various attacks and improves overall safety, highlighting the substantial potential of safety-aware reasoning in strengthening LLMs' robustness against jailbreaks.
- Abstract(参考訳): 大規模言語モデル(LLM)の推論能力は、様々な領域で顕著な進歩と例外的な性能を示している。
しかし、これらの推論機能を活用してLLMの安全性を高め、敵攻撃やジェイルブレイククエリーに対する安全性を高めることは、いまだに未解決のままである。
このギャップを埋めるため,クエリとレスポンスの安全反射をLCMの生成プロセスに統合し,安全性を考慮した推論機構を開放する新たなトレーニングパラダイムであるReasoning-to-Defend(R2D)を提案する。
このアプローチは、各推論ステップにおける自己評価を可能にし、応答の安全性状態の指標として安全ピボットトークンを作成する。
さらに、ピボットトークン予測の学習効率を向上させるために、対話の安全性を知覚するモデルの能力を高めるContrastive Pivot Optimization(CPO)を提案する。
このメカニズムを通じて、LSMは推論中の反応戦略を動的に調整し、ジェイルブレイク攻撃に対する防御能力を著しく強化する。
大規模実験の結果、R2Dは様々な攻撃を効果的に軽減し、全体的な安全性を向上させることが示され、LLMの脱獄に対する堅牢性を強化する上での安全性を意識した推論のかなりの可能性を強調した。
関連論文リスト
- The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
本稿では,視覚大言語モデル (VLLM) がジェイルブレイク攻撃のリスクが高い理由を考察する。
既存の防御機構は、テキストバウンド・プルーデンスの問題に悩まされる。
ジェイルブレイクの2つの代表的な評価手法は、しばしばチャンス合意を示す。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.476222570886483]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な機能を示しているが、Jailbreak攻撃に対する脆弱性は重大なセキュリティリスクをもたらす。
本稿では,Large Language Model (LLM) のレッドチームにおける攻撃戦略と防御機構の最近の進歩を包括的に分析する。
論文 参考訳(メタデータ) (2024-10-09T01:35:38Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
ジェイルブレイク攻撃は、大きな言語モデルを操作して有害なコンテンツを生成する。
Jailbreak Antidoteは、モデルの内部状態のスパースサブセットを操作することで、安全優先のリアルタイム調整を可能にする。
解析の結果,LLMの安全性関連情報はわずかに分散していることがわかった。
論文 参考訳(メタデータ) (2024-10-03T08:34:17Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - A Novel Evaluation Framework for Assessing Resilience Against Prompt Injection Attacks in Large Language Models [0.0]
本研究では,アプリケーションのレジリエンスを定量化する新しいフレームワークを提案する。
このフレームワークには、代表性、解釈可能性、堅牢性を保証するために設計された革新的な技術が含まれている。
その結果, 新しいモデルであるLlama2はChatGLMよりも高いレジリエンスを示した。
論文 参考訳(メタデータ) (2024-01-02T02:06:48Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。