Rethinking Chain-of-Thought from the Perspective of Self-Training
- URL: http://arxiv.org/abs/2412.10827v3
- Date: Wed, 12 Feb 2025 11:41:16 GMT
- Title: Rethinking Chain-of-Thought from the Perspective of Self-Training
- Authors: Zongqian Wu, Baoduo Xu, Ruochen Cui, Mengmeng Zhan, Xiaofeng Zhu, Lei Feng,
- Abstract summary: Chain-of-thought (CoT) reasoning has emerged as an effective approach for activating latent capabilities in LLMs.<n>We propose a novel CoT framework to improve reasoning performance.<n>Our framework integrates two key components: (i) a task-specific prompt module that optimize the initial reasoning process, and (ii) an adaptive reasoning module that dynamically refines the reasoning process.
- Score: 10.722453877596998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-of-thought (CoT) reasoning has emerged as an effective approach for activating latent capabilities in LLMs. Interestingly, we observe that both CoT reasoning and self-training share the core objective: iteratively leveraging model-generated information to progressively reduce prediction uncertainty. Building on this insight, we propose a novel CoT framework to improve reasoning performance. Our framework integrates two key components: (i) a task-specific prompt module that optimizes the initial reasoning process, and (ii) an adaptive reasoning iteration module that dynamically refines the reasoning process and addresses the limitations of previous CoT approaches, \ie over-reasoning and high similarity between consecutive reasoning iterations. Extensive experiments demonstrate that the proposed method achieves significant advantages in both performance and computational efficiency.
Related papers
- The Curse of CoT: On the Limitations of Chain-of-Thought in In-Context Learning [39.613595533503144]
Chain-of-Thought (CoT) prompting has been widely recognized for its ability to enhance reasoning capabilities in large language models.
We show that CoT consistently underperforms direct answering across varying model scales and benchmark complexities.
Our analysis uncovers a fundamental explicit-implicit duality driving CoT's performance in pattern-based ICL.
arXiv Detail & Related papers (2025-04-07T13:51:06Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)
We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Learning to Plan & Reason for Evaluation with Thinking-LLM-as-a-Judge [78.28188747489769]
We propose EvalPlanner, a preference optimization algorithm for Thinking-LLM-as-a-Judge.
In a self-training loop, EvalPlanner iteratively optimize over synthetically constructed evaluation plans and executions.
Our method achieves a new state-of-the-art performance for generative reward models on RewardBench.
arXiv Detail & Related papers (2025-01-30T02:21:59Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.
Specifically, our framework quantifies the information gain' at each reasoning step, enabling the identification of failure modes.
We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking [0.0]
PRefLexOR combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach.
We focus on applications in biological materials science and demonstrate the method in a variety of case studies.
arXiv Detail & Related papers (2024-10-16T08:46:26Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs)
In this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges.
arXiv Detail & Related papers (2024-10-08T05:26:28Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare.
It is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior.
arXiv Detail & Related papers (2024-06-15T13:16:44Z) - How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning [44.02173413922695]
A lack of understanding prevails around the internal mechanisms of the models that facilitate Chain-of-Thought (CoT) prompting.
This work investigates the sub-structures within Large Language Models that manifest CoT reasoning from a point of view.
arXiv Detail & Related papers (2024-02-28T13:14:20Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - CoopInit: Initializing Generative Adversarial Networks via Cooperative
Learning [50.90384817689249]
CoopInit is a cooperative learning-based strategy that can quickly learn a good starting point for GANs.
We demonstrate the effectiveness of the proposed approach on image generation and one-sided unpaired image-to-image translation tasks.
arXiv Detail & Related papers (2023-03-21T07:49:32Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.