Self-Harmonized Chain of Thought
- URL: http://arxiv.org/abs/2409.04057v2
- Date: Tue, 11 Feb 2025 04:12:21 GMT
- Title: Self-Harmonized Chain of Thought
- Authors: Ziqi Jin, Wei Lu,
- Abstract summary: Chain-of-thought (CoT) prompting has demonstrated the capacity of large language models to perform complex reasoning through intermediate steps.
We propose ECHO, a novel method that unifies diverse solution paths into a consistent and effective reasoning pattern.
- Score: 8.540320749424172
- License:
- Abstract: Chain-of-thought (CoT) prompting has demonstrated the capacity of large language models to perform complex reasoning through intermediate steps. While effective, current CoT methods face challenges: Zero-shot-CoT can lead to reasoning errors, and Few-shot-CoT requires labor-intensive manual demonstrations. Auto-CoT attempts to address these issues by automatically generating diverse demonstrations, but this diversity can lead to inconsistent reasoning patterns. We propose ECHO (Self-Harmonized Chain of Thought), a novel method that unifies diverse solution paths into a consistent and effective reasoning pattern. ECHO employs an iterative process to refine and harmonize automatically generated demonstrations, mitigating the limitations of existing approaches. Our comprehensive experiments across arithmetic, commonsense, and symbolic reasoning tasks demonstrate that ECHO outperforms Auto-CoT by an average of 2.8%. These findings suggest that ECHO represents a significant step towards more robust and generalizable automated reasoning in large language models.
Related papers
- Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)
We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - MyGO Multiplex CoT: A Method for Self-Reflection in Large Language Models via Double Chain of Thought Thinking [4.234183823376613]
We introduce Multiplex CoT (Chain of Thought), a method that enables LLMs to simulate a form of self-review while reasoning.
Multiplex CoT leverages the power of iterative reasoning, where the model generates an initial chain of thought and subsequently critiques and refines this reasoning.
arXiv Detail & Related papers (2025-01-20T12:54:57Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Pattern-Aware Chain-of-Thought Prompting in Large Language Models [26.641713417293538]
Chain-of-thought (CoT) prompting can guide language models to engage in complex multi-step reasoning.
We show that the underlying reasoning patterns play a more crucial role in such tasks.
We propose Pattern-Aware CoT, a prompting method that considers the diversity of demonstration patterns.
arXiv Detail & Related papers (2024-04-23T07:50:00Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models [74.40196814292426]
We propose Graph-of-Thought (GoT) reasoning, which models human thought processes not only as a chain but also as a graph.
GoT captures the non-sequential nature of human thinking and allows for a more realistic modeling of thought processes.
We evaluate GoT's performance on a text-only reasoning task and a multimodal reasoning task.
arXiv Detail & Related papers (2023-05-26T02:15:09Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.