論文の概要: Deep-Unfolded Massive Grant-Free Transmission in Cell-Free Wireless Communication Systems
- arxiv url: http://arxiv.org/abs/2502.13390v1
- Date: Wed, 19 Feb 2025 03:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:58:40.573258
- Title: Deep-Unfolded Massive Grant-Free Transmission in Cell-Free Wireless Communication Systems
- Title(参考訳): セルフリー無線通信システムにおける大容量広帯域伝送
- Authors: Gangle Sun, Mengyao Cao, Wenjin Wang, Wei Xu, Christoph Studer,
- Abstract要約: グラントフリー伝送とセルフリー通信は、大規模機械型通信のカバレッジと品質向上に不可欠である。
本稿では,セルフリー無線通信システムにおける大規模許可不要伝送のための,共同アクティブユーザ検出,チャネル推定,データ検出(JACD)の新たな枠組みを提案する。
- 参考スコア(独自算出の注目度): 16.359317035378638
- License:
- Abstract: Grant-free transmission and cell-free communication are vital in improving coverage and quality-of-service for massive machine-type communication. This paper proposes a novel framework of joint active user detection, channel estimation, and data detection (JACD) for massive grant-free transmission in cell-free wireless communication systems. We formulate JACD as an optimization problem and solve it approximately using forward-backward splitting. To deal with the discrete symbol constraint, we relax the discrete constellation to its convex hull and propose two approaches that promote solutions from the constellation set. To reduce complexity, we replace costly computations with approximate shrinkage operations and approximate posterior mean estimator computations. To improve active user detection (AUD) performance, we introduce a soft-output AUD module that considers both the data estimates and channel conditions. To jointly optimize all algorithm hyper-parameters and to improve JACD performance, we further deploy deep unfolding together with a momentum strategy, resulting in two algorithms called DU-ABC and DU-POEM. Finally, we demonstrate the efficacy of the proposed JACD algorithms via extensive system simulations.
- Abstract(参考訳): グラントフリー伝送とセルフリー通信は、大規模機械型通信のカバレッジと品質向上に不可欠である。
本稿では,セルフリー無線通信システムにおける大規模許可不要伝送のための,共同アクティブユーザ検出,チャネル推定,データ検出(JACD)の新たな枠組みを提案する。
我々は,JACDを最適化問題として定式化し,前方後方分割を略して解決する。
離散的なシンボル制約に対処するため、離散星座を凸殻に緩和し、星座集合からの解を促進する2つのアプローチを提案する。
複雑性を低減するため、コスト計算を近似縮小演算と近似後進平均推定器計算に置き換える。
アクティブユーザ検出(AUD)性能を改善するために,データ推定とチャネル条件の両方を考慮したソフトアウトプットAUDモジュールを導入する。
全てのアルゴリズムのハイパーパラメータを共同で最適化し、JACD性能を向上させるために、我々はさらに運動量戦略とともに深層展開を展開し、DU-ABCとDU-POEMと呼ばれる2つのアルゴリズムを導出する。
最後に,システムシミュレーションによるJACDアルゴリズムの有効性を示す。
関連論文リスト
- Covert Multicast in UAV-Enabled Wireless Communication Systems With One-hop and Two-hop Strategies [8.702721247072429]
無人航空機(UAV)による無線通信システムにおける隠蔽マルチキャストの時間について検討する。
本稿では,1つの(OH)パーティクルスワム(PSO)に基づくアルゴリズムと,送信方式とTH方式の性能モデリングのための網羅的なフレームワークを提案する。
提案したPSOアルゴリズムの効率は、広範囲な数値的な結果によって検証される。
論文 参考訳(メタデータ) (2024-10-16T06:46:30Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
インテリジェント反射面(IRS)支援無人航空機(UAV)通信は、地上基地局の負荷を低コストで軽減することが期待されている。
既存の研究は主に、複数のIRSではなく単一のIRSの配置とリソース割り当てに焦点を当てている。
我々は,共同IRSユーザアソシエーションのための新しい最適化アルゴリズム,UAVの軌道最適化,逐次干渉キャンセル(SIC)復号命令スケジューリング,電力割り当てを提案する。
論文 参考訳(メタデータ) (2023-12-08T01:57:10Z) - STAR-RIS-Assisted-Full-Duplex Jamming Design for Secure Wireless Communications System [38.44290756174189]
本稿では,重要で機密性の高いデバイスを盗聴者から保護するためのセキュアな通信方式を提案する。
ESRISのFDビームシフト係数をモード選択として最大化し,MSRISの共振器振幅と位相シフト係数を求める。
論文 参考訳(メタデータ) (2023-09-08T19:36:02Z) - Over-the-Air Federated Averaging with Limited Power and Privacy Budgets [49.04036552090802]
本稿では,電力予算が制限されたプライベート・オーバ・ザ・エア・フェデレーション(DP-OTA-FedAvg)システムについて検討する。
我々は,DP-OTA-FedAvg係数のギャップを最小化し,プライバシー機能を最小化するために解析的問題を改善することを目的としている。
論文 参考訳(メタデータ) (2023-05-05T13:56:40Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
フェデレートラーニング(FL)は、無線ネットワーク上でのタスク指向のデータトラフィックを、限られた無線リソースによって引き起こす可能性がある。
本稿では,通信ラウンドを同時に削減し,低レイテンシなグローバルモデルアグリゲーションを実現するために,空対2次フェデレーション最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-29T12:39:23Z) - Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network [0.0]
近接最適解は、アクセスポイント(AP)とネットワークコントローラ(NC)の間で大量の信号交換を必要とする。
本稿では,AP と NC 間の通信オーバーヘッドをゼロあるいは限定して協調ハイブリッドビームフォーミングを行うことができる2つの非教師なしディープニューラルネットワーク(DNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-06-30T16:42:32Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。