論文の概要: 2.5D U-Net with Depth Reduction for 3D CryoET Object Identification
- arxiv url: http://arxiv.org/abs/2502.13484v1
- Date: Wed, 19 Feb 2025 07:13:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:59:51.078624
- Title: 2.5D U-Net with Depth Reduction for 3D CryoET Object Identification
- Title(参考訳): 2.5D U-Netによる3次元CryoETオブジェクト同定
- Authors: Yusuke Uchida, Takaaki Fukui,
- Abstract要約: 我々は,CZII-CryoETオブジェクト識別コンペティションから,第4位のソリューションを紹介した。
提案手法は,2種類の2.5D U-Netモデルのアンサンブルと深度低減を用いたヒートマップに基づくキーポイント検出手法を採用した。
- 参考スコア(独自算出の注目度): 0.4910937238451484
- License:
- Abstract: Cryo-electron tomography (cryoET) is a crucial technique for unveiling the structure of protein complexes. Automatically analyzing tomograms captured by cryoET is an essential step toward understanding cellular structures. In this paper, we introduce the 4th place solution from the CZII - CryoET Object Identification competition, which was organized to advance the development of automated tomogram analysis techniques. Our solution adopted a heatmap-based keypoint detection approach, utilizing an ensemble of two different types of 2.5D U-Net models with depth reduction. Despite its highly unified and simple architecture, our method achieved 4th place, demonstrating its effectiveness.
- Abstract(参考訳): 核電子トモグラフィー(cryoET)はタンパク質複合体の構造を明らかにする重要な技術である。
CryoETが捉えたトモグラフィーを自動解析することは、細胞構造を理解するための重要なステップである。
本稿では,CZII-CryoETオブジェクト識別コンペティション(CryoETオブジェクト識別コンペティション)の4位解について紹介する。
提案手法は,2種類の2.5D U-Netモデルのアンサンブルと深度低減を用いたヒートマップに基づくキーポイント検出手法を採用した。
高度に統一されたシンプルなアーキテクチャにもかかわらず,本手法は4位となり,その有効性を実証した。
関連論文リスト
- Beyond Current Boundaries: Integrating Deep Learning and AlphaFold for Enhanced Protein Structure Prediction from Low-Resolution Cryo-EM Maps [0.351124620232225]
DeepTracer-LowResEnhanceは、AlphaFoldのパワーとディープラーニングの強化されたマップリファインメント技術を相乗化するフレームワークである。
この手法は低解像度のCryo-EMマップからモデルの構築を著しく改善するために設計されている。
論文 参考訳(メタデータ) (2024-10-30T06:52:46Z) - CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference [30.195615398809043]
Cryo-EMは、高分子錯体の原子分解能3次元構造を決定する方法として人気が高まっている。
近年のCryo-EMの進歩は、アモートされた推論がポーズを予測するために使われている深層学習に焦点が当てられている。
本稿では,半アモタイズ法であるCryoSPINを提案する。この手法では,復元はアモタイズされた推論から始まり,自動デコードに切り替える。
論文 参考訳(メタデータ) (2024-06-15T00:44:32Z) - Tracing and segmentation of molecular patterns in 3-dimensional cryo-et/em density maps through algorithmic image processing and deep learning-based techniques [0.0]
論文はアクチンフィラメントを 追跡する高度な計算技術の開発に焦点を当てています
BundleTrac、Stereociliumで発見された束状アクチンフィラメントをトレースするSpagetti Tracer、アクチンネットワークでランダムに配向されたアクチンフィラメントをトレースするStruwwel Tracerの3つの新しい手法が開発されている。
論文の第2の構成要素は、中分解能(5-10アングストローム)3次元低温電子顕微鏡におけるヘリスやベータシートなどのタンパク質二次構造の位置を決定する畳み込みニューラルネットワーク(CNN)に基づくセグメンテーションモデルの導入である。
論文 参考訳(メタデータ) (2024-03-26T00:41:54Z) - Cryo-forum: A framework for orientation recovery with uncertainty
measure with the application in cryo-EM image analysis [0.0]
本稿では,10次元特徴ベクトルを用いて方向を表現し,予測方向を単位四元数として導出し,不確実な距離で補足する擬似制約擬似プログラムを提案する。
本手法は,2次元Creo-EM画像からの向きをエンドツーエンドで効果的に復元することを示し,不確実性を含むことにより,データセットを3次元レベルで直接クリーンアップすることができる。
論文 参考訳(メタデータ) (2023-07-19T09:09:24Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
核電子顕微鏡(cryo-EM)は、タンパク質やその他の生体分子の3D構造を高分解能で再構築することを可能にする。
3次元構造の連続的な動きをノイズやランダムに配向した2次元Creo-EM画像から再構成することは依然として困難である。
我々はCryoFormerを提案する。CryoFormerは連続したヘテロジニアスCryo-EM再構成のための新しいアプローチである。
論文 参考訳(メタデータ) (2023-03-28T18:59:17Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - 3D Structure from 2D Microscopy images using Deep Learning [0.0]
近年の人工知能の進歩は、顕微鏡画像から正確な3D構造を取り出すために応用されている。
本稿では,2次元単一分子局在顕微鏡画像からタンパク質複合体を再構成する深層学習ソリューションを提案する。
論文 参考訳(メタデータ) (2021-10-14T14:55:41Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
モノラル3Dオブジェクト検出の問題を解決するために、コンテキストと奥行きを認識する特徴表現を学びます。
KITTIベンチマークデータセットにおける単眼的アプローチにおける最新の結果を示す。
論文 参考訳(メタデータ) (2021-03-30T16:20:24Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。