論文の概要: Review of Deep Learning Applications to Structural Proteomics Enabled by Cryogenic Electron Microscopy and Tomography
- arxiv url: http://arxiv.org/abs/2507.19565v1
- Date: Fri, 25 Jul 2025 16:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.670179
- Title: Review of Deep Learning Applications to Structural Proteomics Enabled by Cryogenic Electron Microscopy and Tomography
- Title(参考訳): 極低温電子顕微鏡とトモグラフィによる構造プロテオミクスの深層学習応用の展望
- Authors: Brady K. Zhou, Jason J. Hu, Jane K. J. Lee, Z. Hong Zhou, Demetri Terzopoulos,
- Abstract要約: 低温電子顕微鏡(cryoEM)とトモグラフィ(cryoET)の進歩により「cryoEM革命」は高分解能構造データにおいて指数関数的に成長した
構造的解決への深層学習の統合は、低信号対雑音比、優先方向アーティファクト、欠落問題など、長年にわたる課題に対処する。
本稿では,畳み込みニューラルネットワークを用いた自動粒子抽出から,好みの配向バイアスに対する計算解まで,CreoEMパイプライン全体にわたるAI応用について検討する。
- 参考スコア(独自算出の注目度): 9.273554898053678
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The past decade's "cryoEM revolution" has produced exponential growth in high-resolution structural data through advances in cryogenic electron microscopy (cryoEM) and tomography (cryoET). Deep learning integration into structural proteomics workflows addresses longstanding challenges including low signal-to-noise ratios, preferred orientation artifacts, and missing-wedge problems that historically limited efficiency and scalability. This review examines AI applications across the entire cryoEM pipeline, from automated particle picking using convolutional neural networks (Topaz, crYOLO, CryoSegNet) to computational solutions for preferred orientation bias (spIsoNet, cryoPROS) and advanced denoising algorithms (Topaz-Denoise). In cryoET, tools like IsoNet employ U-Net architectures for simultaneous missing-wedge correction and noise reduction, while TomoNet streamlines subtomogram averaging through AI-driven particle detection. The workflow culminates with automated atomic model building using sophisticated tools like ModelAngelo, DeepTracer, and CryoREAD that translate density maps into interpretable biological structures. These AI-enhanced approaches have achieved near-atomic resolution reconstructions with minimal manual intervention, resolved previously intractable datasets suffering from severe orientation bias, and enabled successful application to diverse biological systems from HIV virus-like particles to in situ ribosomal complexes. As deep learning evolves, particularly with large language models and vision transformers, the future promises sophisticated automation and accessibility in structural biology, potentially revolutionizing our understanding of macromolecular architecture and function.
- Abstract(参考訳): 過去10年間の「クライオEM革命」は、低温電子顕微鏡(cryoEM)とトモグラフィ(cryoET)の進歩を通じて、高解像度構造データを指数関数的に成長させてきた。
構造的プロテオミクスワークフローへのディープラーニングの統合は、信号と雑音の比率の低さ、好みの向きのアーティファクト、歴史的に効率とスケーラビリティを制限した欠落した問題など、長年にわたる課題に対処する。
本稿では、畳み込みニューラルネットワーク(Topaz, crYOLO, CryoSegNet)を用いた自動粒子抽出から、好みの配向バイアス(spIsoNet, cryoPROS)と高度な復調アルゴリズム(Topaz-Denoise)の計算ソリューションまで、CreoEMパイプライン全体にわたるAIアプリケーションについて検討する。
CryoETでは、IsoNetのようなツールがU-Netアーキテクチャを採用し、AI駆動の粒子検出を通じて平均的なサブトモグラムを合理化している。
このワークフローは、ModelAngelo、DeepTracer、CryoREADといった高度なツールを使って、密度マップを解釈可能な生物学的構造に変換する自動原子モデル構築で終わる。
これらのAIによって強化されたアプローチは、手動による最小限の介入でほぼ原子レベルでの分解を達成し、高度の配向バイアスに苦しむ前に解決可能なデータセットを解決し、HIVウイルスのような粒子からin situリボソーム複合体まで多様な生物学的システムに適用することに成功した。
ディープラーニングが、特に大きな言語モデルとビジョントランスフォーマーで進化するにつれて、未来は構造生物学における高度な自動化とアクセシビリティを約束し、マクロ分子のアーキテクチャと機能に対する私たちの理解に革命をもたらす可能性がある。
関連論文リスト
- STEM Diffraction Pattern Analysis with Deep Learning Networks [0.0]
本研究は、走査型透過電子顕微鏡(STEM)回折パターン(DP)から直接オイラー角を予測する機械学習に基づくアプローチを提案する。
これは高解像度結晶配向マップの自動生成を可能にし、ナノスケール内部の微細構造の解析を容易にする。
3つのディープラーニングアーキテクチャ – 畳み込みニューラルネットワーク(CNN)、Dense Convolutional Networks(DenseNets)、Shifted Windows(Swin) Transformers – は、商用TMアルゴリズムによってラベル付けされた実験的に取得されたデータセットを使用して評価される。
論文 参考訳(メタデータ) (2025-07-02T16:58:09Z) - F-ANcGAN: An Attention-Enhanced Cycle Consistent Generative Adversarial Architecture for Synthetic Image Generation of Nanoparticles [3.124884279860061]
F-ANcGANは,限られたデータサンプルを用いて学習可能な,注目度の高いサイクル一貫した生成対向系である。
本モデルでは,構造的関係を捉えるために,自己アテンションを備えたスタイルU-NetジェネレータとU-Netセグメンテーションネットワークを用いる。
論文 参考訳(メタデータ) (2025-05-23T17:02:22Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
論文 参考訳(メタデータ) (2024-06-07T12:01:37Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - Leveraging generative adversarial networks to create realistic scanning
transmission electron microscopy images [2.5954872177280346]
機械学習は、自律的なデータ収集と処理を通じて材料研究に革命をもたらす可能性がある。
我々は,実空間周波数情報を用いたシミュレーションデータを増大させるために,相互空間判別器を備えたサイクル生成逆数ネットワーク(CycleGAN)を用いる。
完全な畳み込みネットワーク(FCN)をトレーニングして、450万個の原子データセット内の単一原子欠陥を同定することで、我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-18T19:19:27Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - DLDNN: Deterministic Lateral Displacement Design Automation by Neural
Networks [1.8365768330479992]
本稿では、決定論的側方変位(DLD)問題に対処する高速多目的設計自動化プラットフォームについて検討する。
畳み込みニューラルネットワークと人工ニューラルネットワークを用いて、様々なDLD構成の速度場と臨界径を学習した。
開発ツールは12の臨界条件でテストされ、4%未満の誤差で確実に実行された。
論文 参考訳(メタデータ) (2022-08-30T14:38:17Z) - Cell nuclei classification in histopathological images using hybrid
OLConvNet [13.858624044986815]
我々は,ハイブリッドでフレキシブルなディープラーニングアーキテクチャOLConvNetを提案している。
CNN_3L$は、少ないパラメータをトレーニングすることで、トレーニング時間を短縮する。
提案手法は, 現代の複雑なアルゴリズムよりも良好に動作し, 性能が向上することを示した。
論文 参考訳(メタデータ) (2022-02-21T12:39:37Z) - Learning to automate cryo-electron microscopy data collection with
Ptolemy [4.6453787256723365]
低温電子顕微鏡(cryo-EM)は、生体高分子の近原・近原子分解能3次元構造を決定する主要な方法として登場した。
現在,高磁化Cryo-EMマイクログラフの収集には,パラメータの入力と手動チューニングが必要である。
そこで我々は,目的のアルゴリズムを用いて,低・中規模のターゲットを自動生成する最初のパイプラインを開発した。
論文 参考訳(メタデータ) (2021-12-01T22:39:28Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。