論文の概要: Multi-Scale and Multi-Objective Optimization for Cross-Lingual Aspect-Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2502.13718v1
- Date: Wed, 19 Feb 2025 13:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:11.349601
- Title: Multi-Scale and Multi-Objective Optimization for Cross-Lingual Aspect-Based Sentiment Analysis
- Title(参考訳): 言語横断的アスペクトベース感性分析のための多目的・多目的最適化
- Authors: Chengyan Wu, Bolei Ma, Ningyuan Deng, Yanqing He, Yun Xue,
- Abstract要約: 言語間ABSAのための新しいフレームワークであるMulti-Scale and Multi-Objective Optimization (MSMO)を提案する。
我々は、異なる文脈環境におけるアスペクト項の特徴を整合させて、言語間の文レベルとアスペクトレベルのアライメントを実現する。
その結果,MSMOは複数の言語やモデルにまたがって最先端の性能を実現することで,言語間ABSAを著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 0.808899919316203
- License:
- Abstract: Aspect-based sentiment analysis (ABSA) is a sequence labeling task that has garnered growing research interest in multilingual contexts. However, recent studies lack more robust feature alignment and finer aspect-level alignment. In this paper, we propose a novel framework, Multi-Scale and Multi-Objective optimization (MSMO) for cross-lingual ABSA. During multi-scale alignment, we achieve cross-lingual sentence-level and aspect-level alignment, aligning features of aspect terms in different contextual environments. Specifically, we introduce code-switched bilingual sentences into the language discriminator and consistency training modules to enhance the model's robustness. During multi-objective optimization, we design two optimization objectives: supervised training and consistency training, aiming to enhance cross-lingual semantic alignment. To further improve model performance, we incorporate distilled knowledge of the target language into the model. Results show that MSMO significantly enhances cross-lingual ABSA by achieving state-of-the-art performance across multiple languages and models.
- Abstract(参考訳): アスペクトベースの感情分析(ABSA)は、多言語文脈における研究の関心が高まっているシーケンスラベリングタスクである。
しかし、最近の研究では、より堅牢な特徴アライメントとより細かいアスペクトレベルのアライメントが欠如している。
本稿では,多言語ABSAのためのMSMO(Multi-Scale and Multi-Objective Optimization)を提案する。
マルチスケールアライメントにおいて、異なる文脈環境におけるアスペクト項の特徴を整合させて、言語間の文レベルとアスペクトレベルのアライメントを実現する。
具体的には、モデルの堅牢性を高めるために、言語識別器と一貫性トレーニングモジュールにコード切替バイリンガル文を導入します。
多目的最適化において,言語間セマンティックアライメントの強化を目的とした教師付きトレーニングと一貫性トレーニングの2つの最適化目標を設計する。
モデル性能をさらに向上するため,対象言語の蒸留知識をモデルに組み込む。
その結果,MSMOは複数の言語やモデルにまたがって最先端の性能を実現することで,言語間ABSAを著しく向上させることがわかった。
関連論文リスト
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - A Recipe of Parallel Corpora Exploitation for Multilingual Large Language Models [64.79218405438871]
最近の研究は、多言語大言語モデルを強化するために並列コーパスを利用する可能性を強調している。
並列コーパスで強化された多言語大言語モデルの性能に及ぼす並列コーパスの品質と量,訓練目標,モデルサイズの影響について検討した。
論文 参考訳(メタデータ) (2024-06-29T13:12:39Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Learning Multilingual Representation for Natural Language Understanding
with Enhanced Cross-Lingual Supervision [42.724921817550516]
そこで本稿では,MAの代替として,DA(Decomposed attention)というネットワークを提案する。
DAは言語内注意(IA)と言語間注意(CA)から構成されており、それぞれ言語内および言語間監督をモデル化している。
様々な言語間自然言語理解タスクの実験により、提案したアーキテクチャと学習戦略がモデルの言語間移動性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2021-06-09T16:12:13Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-Mは、複数の言語の表現をモノリンガルコーパスと整合させる新しいトレーニング手法である。
単言語コーパス上で擬似並列文ペアを生成し、異なる言語間のセマンティックアライメントの学習を可能にする。
実験結果から,ERNIE-Mは既存の言語間モデルよりも優れており,様々な言語間下流タスクに対して新たな最先端結果を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-31T15:52:27Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
本稿では、損失関数幾何学のレンズを通して多言語最適化のブラックボックスを覗き込もうとする。
最適化軌道に沿って測定された勾配類似性は重要な信号であり、言語近接とよく相関している。
そこで我々はGradient Vaccineというシンプルでスケーラブルな最適化手法を考案した。
論文 参考訳(メタデータ) (2020-10-12T17:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。