CARE: Confidence-Aware Regression Estimation of building density fine-tuning EO Foundation Models
- URL: http://arxiv.org/abs/2502.13734v1
- Date: Wed, 19 Feb 2025 14:02:00 GMT
- Title: CARE: Confidence-Aware Regression Estimation of building density fine-tuning EO Foundation Models
- Authors: Nikolaos Dionelis, Jente Bosmans, Nicolas Longépé,
- Abstract summary: We develop, train and evaluate a model Confidence-Aware Regression Estimation (CARE)
Our model CARE computes and assigns confidence to regression output results.
We evaluate the proposed model CARE and experimental results on data from the Copernicus Sentinel-2 satellite constellation for estimating the density of buildings.
- Score: 0.9558392439655016
- License:
- Abstract: Performing accurate confidence quantification and assessment is important for deep neural networks to predict their failures, improve their performance and enhance their capabilities in real-world applications, for their practical deployment in real life. For pixel-wise regression tasks, confidence quantification and assessment has not been well addressed in the literature, in contrast to classification tasks like semantic segmentation. The softmax output layer is not used in deep neural networks that solve pixel-wise regression problems. In this paper, to address these problems, we develop, train and evaluate the proposed model Confidence-Aware Regression Estimation (CARE). Our model CARE computes and assigns confidence to regression output results. We focus on solving regression problems as downstream tasks of an AI Foundation Model for Earth Observation (EO). We evaluate the proposed model CARE and experimental results on data from the Copernicus Sentinel-2 satellite constellation for estimating the density of buildings show that the proposed method can be successfully applied to regression problems. We also show that our approach outperforms other methods.
Related papers
- Average-Over-Time Spiking Neural Networks for Uncertainty Estimation in Regression [3.409728296852651]
We introduce two methods that adapt the Average-Over-Time Spiking Neural Network (AOT-SNN) framework to regression tasks.
We evaluate our approaches on both a toy dataset and several benchmark datasets.
arXiv Detail & Related papers (2024-11-29T23:13:52Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation
with GPT-4 in Cloud Incident Root Cause Analysis [17.362895895214344]
Large language models (LLMs) are used to help humans identify the root causes of cloud incidents.
We propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction.
We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy.
arXiv Detail & Related papers (2023-09-11T21:24:00Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
Our research introduces a method for uncertainty estimation.
It enhances any base regression model with reasonable uncertainty estimates.
Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals.
arXiv Detail & Related papers (2023-02-06T14:52:56Z) - MDN-VO: Estimating Visual Odometry with Confidence [34.8860186009308]
Visual Odometry (VO) is used in many applications including robotics and autonomous systems.
We propose a deep learning-based VO model to estimate 6-DoF poses, as well as a confidence model for these estimates.
Our experiments show that the proposed model exceeds state-of-the-art performance in addition to detecting failure cases.
arXiv Detail & Related papers (2021-12-23T19:26:04Z) - SLURP: Side Learning Uncertainty for Regression Problems [3.5321916087562304]
We propose SLURP, a generic approach for regression uncertainty estimation via a side learner.
We test SLURP on two critical regression tasks in computer vision: monocular depth and optical flow estimation.
arXiv Detail & Related papers (2021-10-21T14:50:42Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.