論文の概要: Why Safeguarded Ships Run Aground? Aligned Large Language Models' Safety Mechanisms Tend to Be Anchored in The Template Region
- arxiv url: http://arxiv.org/abs/2502.13946v1
- Date: Wed, 19 Feb 2025 18:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:01:52.099419
- Title: Why Safeguarded Ships Run Aground? Aligned Large Language Models' Safety Mechanisms Tend to Be Anchored in The Template Region
- Title(参考訳): なぜ保護された船が地上で動くのか? テンプレート領域における大規模言語モデルの安全メカニズム
- Authors: Chak Tou Leong, Qingyu Yin, Jian Wang, Wenjie Li,
- Abstract要約: テンプレートアンコレッド型安全アライメントは,多種多様な大言語モデル(LLM)にまたがっていることを示す。
我々の力学解析は、推論時ジェイルブレイク攻撃に遭遇した場合、モデルがどのような影響を受けやすいかを示す。
テンプレート領域から安全メカニズムを分離することで,脆弱性の軽減と脱獄攻撃が期待できることを示す。
- 参考スコア(独自算出の注目度): 13.962617572588393
- License:
- Abstract: The safety alignment of large language models (LLMs) remains vulnerable, as their initial behavior can be easily jailbroken by even relatively simple attacks. Since infilling a fixed template between the input instruction and initial model output is a common practice for existing LLMs, we hypothesize that this template is a key factor behind their vulnerabilities: LLMs' safety-related decision-making overly relies on the aggregated information from the template region, which largely influences these models' safety behavior. We refer to this issue as template-anchored safety alignment. In this paper, we conduct extensive experiments and verify that template-anchored safety alignment is widespread across various aligned LLMs. Our mechanistic analyses demonstrate how it leads to models' susceptibility when encountering inference-time jailbreak attacks. Furthermore, we show that detaching safety mechanisms from the template region is promising in mitigating vulnerabilities to jailbreak attacks. We encourage future research to develop more robust safety alignment techniques that reduce reliance on the template region.
- Abstract(参考訳): 大規模な言語モデル(LLM)の安全性の整合性は依然として脆弱であり、その初期動作は比較的単純な攻撃によって簡単にジェイルブレイクすることができる。
入力命令と初期モデル出力の間に固定されたテンプレートを埋め込むことは、既存のLCMにとって一般的な慣行であるため、このテンプレートが脆弱性の背後にある重要な要因であると仮定する。
この問題をテンプレートアンカレートされた安全性アライメントと呼んでいる。
本稿では,広範囲にわたる実験を行い,テンプレート・アンコール型安全アライメントが各種のLCMにまたがっていることを検証する。
我々の力学解析は、推論時ジェイルブレイク攻撃に遭遇した場合、モデルがどのような影響を受けやすいかを示す。
さらに,テンプレート領域から安全機構を分離することで,脆弱性の軽減と脱獄攻撃が期待できることを示す。
我々は,テンプレート領域への依存を軽減し,より堅牢な安全アライメント技術を開発するための今後の研究を奨励する。
関連論文リスト
- Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Safety Alignment Should Be Made More Than Just a Few Tokens Deep [48.823599143711235]
現在のLarge Language Models(LLM)の安全性アライメントは脆弱である。
比較的単純な攻撃、あるいは微調整さえも、ジェイルブレイク対応のモデルを作ることができる。
最初の数個のトークン以上の安全性アライメントの強化は、一般的なエクスプロイトに対するロバスト性を大幅に向上させる可能性があることを、私たちは示しています。
論文 参考訳(メタデータ) (2024-06-10T00:35:23Z) - How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States [65.45603614354329]
大規模言語モデル(LLM)は、悪意のあるユーザ入力に対する応答を避けるために、安全アライメントに依存している。
ジェイルブレイクは安全ガードレールを回避でき、LLMは有害な内容を生成する。
中間隠蔽状態を通してLSMの安全性を説明するために弱い分類器を用いる。
論文 参考訳(メタデータ) (2024-06-09T05:04:37Z) - Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models [65.06446825020578]
大規模言語モデル(LLM)が人間の嗜好に合わせて行動し、推論中に有害な行動を防ぐためには、安全性の調整が不可欠である。
我々は, LLMの安全景観をナビゲートすることで, LLMの微調整のリスクを測定することを目的としている。
論文 参考訳(メタデータ) (2024-05-27T17:31:56Z) - A safety realignment framework via subspace-oriented model fusion for large language models [22.588716190505963]
サブスペース指向モデル融合(SOMF)による安全性向上フレームワークを提案する。
我々のアプローチは、各微調整されたモデルの重みから全てのタスクベクトルを遠ざけることから始まる。
次に,これらのベクトル内の安全関連領域をサブスペースマスキング手法により同定する。
論文 参考訳(メタデータ) (2024-05-15T03:04:05Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。