論文の概要: LIDDIA: Language-based Intelligent Drug Discovery Agent
- arxiv url: http://arxiv.org/abs/2502.13959v1
- Date: Wed, 19 Feb 2025 18:56:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 20:12:10.070413
- Title: LIDDIA: Language-based Intelligent Drug Discovery Agent
- Title(参考訳): LIDDIA: 言語に基づくインテリジェントドラッグ発見エージェント
- Authors: Reza Averly, Frazier N. Baker, Xia Ning,
- Abstract要約: LIDDiAは、サイリコの薬物発見過程をインテリジェントにナビゲートできる自律エージェントである。
臨床的に関係のある30の標的の70%以上において、重要な医薬品基準を満たす分子を生成することができる。
がんにとって重要な標的であるEGFR上で、有望な新しい薬物候補を特定できる。
- 参考スコア(独自算出の注目度): 0.5325390073522079
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drug discovery is a long, expensive, and complex process, relying heavily on human medicinal chemists, who can spend years searching the vast space of potential therapies. Recent advances in artificial intelligence for chemistry have sought to expedite individual drug discovery tasks; however, there remains a critical need for an intelligent agent that can navigate the drug discovery process. Towards this end, we introduce LIDDiA, an autonomous agent capable of intelligently navigating the drug discovery process in silico. By leveraging the reasoning capabilities of large language models, LIDDiA serves as a low-cost and highly-adaptable tool for autonomous drug discovery. We comprehensively examine LIDDiA, demonstrating that (1) it can generate molecules meeting key pharmaceutical criteria on over 70% of 30 clinically relevant targets, (2) it intelligently balances exploration and exploitation in the chemical space, and (3) it can identify promising novel drug candidates on EGFR, a critical target for cancers.
- Abstract(参考訳): 医薬品の発見は長くて高価で複雑なプロセスであり、ヒトの薬剤師に大きく依存している。
化学のための人工知能の最近の進歩は、個々の薬物発見タスクを迅速化しようとしているが、薬物発見プロセスをナビゲートできるインテリジェントエージェントは、依然として重要な必要性である。
そこで本研究では,サイリコの薬物発見過程をインテリジェントにナビゲートする自律エージェントであるLIDDiAを紹介する。
大規模言語モデルの推論能力を活用することで、LIDDiAは、自律的な薬物発見のための低コストで高度に適応可能なツールとして機能する。
LIDDiAを包括的に検討し,(1)臨床的に関係のある30の標的の70%以上の重要な薬剤基準を満たす分子を生成すること,(2)化学領域における探索と利用のインテリジェントなバランスをとること,(3)癌にとって重要な標的であるEGFR上で有望な新規薬物候補を同定できること,などを実証した。
関連論文リスト
- PharmAgents: Building a Virtual Pharma with Large Language Model Agents [19.589707628042422]
マルチエージェントコラボレーションによる仮想医薬エコシステムであるPharmAgentsを紹介する。
このシステムは、特殊な機械学習モデルと計算ツールを備えた、説明可能なLCM駆動エージェントを統合している。
潜在的な治療標的を特定し、有望な鉛化合物を発見し、結合親和性と重要な分子特性を高め、毒性と合成可能性のシリコ分析を行う。
論文 参考訳(メタデータ) (2025-03-28T06:02:53Z) - Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization [51.104444856052204]
我々は,多目的分子最適化のための協調型大規模言語モデル(LLM)システムであるMultiMolを提案する。
6つの多目的最適化タスクに対する評価において、MultiMolは既存の手法を著しく上回り、82.30%の成功率を達成した。
論文 参考訳(メタデータ) (2025-03-05T13:47:55Z) - Small Molecule Drug Discovery Through Deep Learning:Progress, Challenges, and Opportunities [34.72068278499029]
深層学習(DL)技術の急速な発展により,DLを基盤とした小型分子ドラッグ発見法は優れた性能を発揮した。
本稿では, DLをベースとした小分子創薬における最近の重要な課題と代表的手法を体系的に要約し, 一般化する。
論文 参考訳(メタデータ) (2025-02-13T05:24:52Z) - Decoding Drug Discovery: Exploring A-to-Z In silico Methods for Beginners [4.08908337437878]
本研究の主な目的は、薬物開発プロセスで使用されるシリコ法をレビューすることである。
本稿では, 生物活性化合物の標的同定に必須であるシリカ技術におけるA-to-Zについて, 徹底的に論じる。
論文 参考訳(メタデータ) (2024-12-15T10:02:38Z) - DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration [24.65716292347949]
DrugAgentは、薬物発見タスクのための機械学習(ML)プログラミングを自動化するマルチエージェントフレームワークである。
以上の結果から,DragonAgentは最上位のベースラインを一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-24T03:06:59Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Emerging Opportunities of Using Large Language Models for Translation
Between Drug Molecules and Indications [6.832024637226738]
薬物分子とそれに対応する指標を翻訳する新しい課題を提案する。
表示からの分子の生成、またはその逆は、病気のより効率的なターゲティングを可能にする。
論文 参考訳(メタデータ) (2024-02-14T21:33:13Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - Artificial Intelligence for Drug Discovery: Are We There Yet? [0.08306867559432653]
薬物発見は、効果的な治療開発を促進するために、データサイエンス、情報学、人工知能(AI)といった新しい技術に適応している。
本稿では, 薬物発見の3つの柱である疾患, 標的, 治療モダリティにおけるAIの利用について論じる。
論文 参考訳(メタデータ) (2023-07-13T01:51:26Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
新しい治療法のために既存の薬物を再利用することは、実験コストの低減で薬物開発を加速する魅力的な解決策である。
本稿では,薬物再資源化のための深層学習手法とツールの活用に関するガイドラインを紹介する。
論文 参考訳(メタデータ) (2022-02-08T09:42:08Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
人体における薬物と標的(DTI)の相互作用は、生物医学や応用において重要な役割を担っている。
毎年何百万もの論文がバイオメディカル分野で出回っているので、文学からDTIの知識を自動的に発見することは、業界にとって急激な需要となっている。
生成的アプローチを用いて,この課題に対する最初のエンドツーエンドソリューションについて検討する。
我々はDTI三重項をシーケンスとみなし、Transformerベースのモデルを使ってエンティティや関係の詳細なアノテーションを使わずに直接生成する。
論文 参考訳(メタデータ) (2021-09-27T17:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。