Appeal prediction for AI up-scaled Images
- URL: http://arxiv.org/abs/2502.14013v1
- Date: Wed, 19 Feb 2025 13:45:24 GMT
- Title: Appeal prediction for AI up-scaled Images
- Authors: Steve Göring, Rasmus Merten, Alexander Raake,
- Abstract summary: We describe our developed dataset, which uses 136 base images and five different up-scaling methods.
We evaluate the appeal of the different methods, and the results indicate that Real-ESRGAN and BSRGAN are the best.
In addition to this, we evaluate state-of-the-art image appeal and quality models, here none of the models showed a high prediction performance.
- Score: 45.61706071739717
- License:
- Abstract: DNN- or AI-based up-scaling algorithms are gaining in popularity due to the improvements in machine learning. Various up-scaling models using CNNs, GANs or mixed approaches have been published. The majority of models are evaluated using PSRN and SSIM or only a few example images. However, a performance evaluation with a wide range of real-world images and subjective evaluation is missing, which we tackle in the following paper. For this reason, we describe our developed dataset, which uses 136 base images and five different up-scaling methods, namely Real-ESRGAN, BSRGAN, waifu2x, KXNet, and Lanczos. Overall the dataset consists of 1496 annotated images. The labeling of our dataset focused on image appeal and has been performed using crowd-sourcing employing our open-source tool AVRate Voyager. We evaluate the appeal of the different methods, and the results indicate that Real-ESRGAN and BSRGAN are the best. Furthermore, we train a DNN to detect which up-scaling method has been used, the trained models have a good overall performance in our evaluation. In addition to this, we evaluate state-of-the-art image appeal and quality models, here none of the models showed a high prediction performance, therefore we also trained two own approaches. The first uses transfer learning and has the best performance, and the second model uses signal-based features and a random forest model with good overall performance. We share the data and implementation to allow further research in the context of open science.
Related papers
- A Large-scale AI-generated Image Inpainting Benchmark [11.216906046169683]
We propose a methodology for creating high-quality inpainting datasets and apply it to create DiQuID.
DiQuID comprises over 95,000 inpainted images generated from 78,000 original images sourced from MS-COCO, RAISE, and OpenImages.
We provide comprehensive benchmarking results using state-of-the-art forgery detection methods, demonstrating the dataset's effectiveness in evaluating and improving detection algorithms.
arXiv Detail & Related papers (2025-02-10T15:56:28Z) - Enhanced Convolutional Neural Networks for Improved Image Classification [0.40964539027092917]
CIFAR-10 is a widely used benchmark to evaluate the performance of classification models on small-scale, multi-class datasets.
We propose an enhanced CNN architecture that integrates deeper convolutional blocks, batch normalization, and dropout regularization to achieve superior performance.
arXiv Detail & Related papers (2025-02-02T04:32:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification [0.0]
We first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data.
Then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data.
arXiv Detail & Related papers (2024-11-19T01:01:56Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - An Interaction-based Convolutional Neural Network (ICNN) Towards Better
Understanding of COVID-19 X-ray Images [0.0]
We propose a novel Interaction-based Convolutional Neural Network (ICNN) that does not make assumptions about the relevance of local information.
We demonstrate that the proposed method produces state-of-the-art prediction performance of 99.8% on a real-world data set classifying COVID-19 Chest X-ray images.
arXiv Detail & Related papers (2021-06-13T04:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.