論文の概要: Investigating Non-Transitivity in LLM-as-a-Judge
- arxiv url: http://arxiv.org/abs/2502.14074v1
- Date: Wed, 19 Feb 2025 19:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:30:13.556451
- Title: Investigating Non-Transitivity in LLM-as-a-Judge
- Title(参考訳): LLM-as-a-Judgeにおける非遷移性の検討
- Authors: Yi Xu, Laura Ruis, Tim Rocktäschel, Robert Kirk,
- Abstract要約: 本稿では,AlpacaEvalフレームワークにおける非透過性の存在について検討し,モデルランキングに対するその影響を分析する。
ラウンドロビントーナメントの計算コストに対処するため,スイス・ワイズ・イテレーティブ・マッチメイキング(Swim)トーナメントを提案する。
- 参考スコア(独自算出の注目度): 24.358802214160697
- License:
- Abstract: Automatic evaluation methods based on large language models (LLMs) are emerging as the standard tool for assessing the instruction-following abilities of LLM-based agents. The most common method in this paradigm, pairwise comparisons with a baseline model, critically depends on the assumption of transitive preferences. However, the validity of this assumption remains largely unexplored. In this study, we investigate the presence of non-transitivity within the AlpacaEval framework and analyze its effects on model rankings. We find that LLM judges exhibit non-transitive preferences, leading to rankings that are sensitive to the choice of the baseline model. To mitigate this issue, we show that round-robin tournaments combined with Bradley-Terry models of preference can produce more reliable rankings. Notably, our method increases both the Spearman correlation and the Kendall correlation with Chatbot Arena (95.0% -> 96.4% and 82.1% -> 86.3% respectively). To address the computational cost of round-robin tournaments, we propose Swiss-Wise Iterative Matchmaking (Swim) tournaments, using a dynamic matching strategy to capture the benefits of round-robin tournaments while maintaining computational efficiency.
- Abstract(参考訳): LLMエージェントの命令追従能力を評価するための標準ツールとして,大規模言語モデル(LLM)に基づく自動評価手法が登場している。
このパラダイムにおける最も一般的な方法である、ベースラインモデルとのペアワイズ比較は、推移的選好の仮定に大きく依存する。
しかし、この仮定の妥当性はほとんど解明されていない。
本研究では,AlpacaEvalフレームワークにおける非透過性の存在について検討し,モデルランキングに対するその影響を分析する。
LLM審査員は非推移的選好を示し、基準モデルの選択に敏感なランク付けにつながる。
この問題を緩和するために、Bradley-Terryモデルのラウンドロビントーナメントと組み合わせることで、より信頼性の高いランキングが得られることを示す。
特にスピアマン相関とケンドール相関をチャトボット・アリーナ(95.0%->96.4%->82.1%->86.3%)と比較した。
ラウンドロビントーナメントの計算コストに対処するため,スイス・ワイズ反復試合(Swim)トーナメントを提案する。
関連論文リスト
- Dr. SoW: Density Ratio of Strong-over-weak LLMs for Reducing the Cost of Human Annotation in Preference Tuning [15.776175440446414]
本稿では,人間のアノテーションへの依存を解消するコスト効率の高い方法であるDr.SoW(Density Ratio of Strong over Weak)を紹介する。
Dr.SoW は報奨信号として、より整列した LLM と低整列の LLM の対数密度比を用いる。
Dr.SoWによるデータを用いたLlama-3-8B-インストラクタを選好する。
論文 参考訳(メタデータ) (2024-11-04T18:54:39Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - Constructing Domain-Specific Evaluation Sets for LLM-as-a-judge [15.980606104936365]
大規模言語モデル(LLM)は機械学習のランドスケープに革命をもたらしたが、現在のベンチマークは現実世界のアプリケーションでこれらのモデルの多様な振る舞いを捉えるのに不足していることが多い。
Alpaca-Eval 2.0 LC referenceubois2024length controlledalpacaevalsimpleway や Arena-Hard v0.1 citeli2024crowdsourced のような既存のフレームワークは、汎用的なクエリと法、医学、多言語コンテキストといったドメイン間の多様性の欠如によって制限されている。
LLM-asに適したドメイン固有の評価セットをキュレートする新しいデータパイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-16T15:41:43Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
我々は、新しいオンラインアルゴリズム、反復的ナッシュポリシー最適化(INPO)を提案する。
従来の方法とは異なり、INPOは個々の応答に対する期待される勝利率を推定する必要性を回避している。
LLaMA-3-8BベースのSFTモデルで、INPOはAlpacaEval 2.0で42.6%、Arena-Hardで37.8%の勝利率を達成した。
論文 参考訳(メタデータ) (2024-06-30T08:00:34Z) - A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation [14.064465097974836]
本稿では,Large Language Model (LLM) を用いた対数ナラティブ(CN)生成の評価手法を提案する。
従来の自動指標は, 人間の判断と相関が低く, 生成したCNと人間の知覚との微妙な関係を捉えることができないことを示す。
論文 参考訳(メタデータ) (2024-06-21T15:11:33Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Dissecting Human and LLM Preferences [80.55271307662365]
人間は誤りに敏感ではなく、自分の姿勢を支持する反応を好んでおり、モデルが限界を認めている場合、明確な嫌悪を示します。
GPT-4-Turboのような先進的なLCMは、より正確さ、明快さ、無害さを強調している。
嗜好に基づく評価は意図的に操作可能であることを示す。
論文 参考訳(メタデータ) (2024-02-17T14:34:31Z) - A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models [35.17291316942284]
本稿では,Large Language Models (LLMs) に基づくゼロショット文書ランキング手法を提案する。
我々のアプローチは、LLMベースのゼロショットランキング(ポイントワイズ、ペアワイズ、リストワイズ)の既存のプロンプトアプローチを補完する。
論文 参考訳(メタデータ) (2023-10-14T05:20:02Z) - PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations [10.709365940160685]
現代の大規模言語モデル(LLM)は、自動評価と比較が難しい。
本稿では,全ての解答対に対するLLMのペアワイズ選好を考慮に入れたピアランク(PR)アルゴリズムを提案する。
我々のアプローチは高い精度を実現し、人間の判断とよく一致していることがわかりました。
論文 参考訳(メタデータ) (2023-07-06T04:05:44Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。