論文の概要: Multi-Objective Bayesian Optimization for Networked Black-Box Systems: A Path to Greener Profits and Smarter Designs
- arxiv url: http://arxiv.org/abs/2502.14121v1
- Date: Wed, 19 Feb 2025 21:49:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:30:20.037832
- Title: Multi-Objective Bayesian Optimization for Networked Black-Box Systems: A Path to Greener Profits and Smarter Designs
- Title(参考訳): ネットワークブラックボックスシステムの多目的ベイズ最適化 : よりグリーンな利益とよりスマートな設計への道
- Authors: Akshay Kudva, Wei-Ting Tang, Joel A. Paulson,
- Abstract要約: MOBONSは、一般関数ネットワークを効率的に最適化できるベイズ最適化に着想を得た新しいアルゴリズムである。
持続可能なプロセス設計を含む2つのケーススタディを通じて,MOBONSの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Designing modern industrial systems requires balancing several competing objectives, such as profitability, resilience, and sustainability, while accounting for complex interactions between technological, economic, and environmental factors. Multi-objective optimization (MOO) methods are commonly used to navigate these tradeoffs, but selecting the appropriate algorithm to tackle these problems is often unclear, particularly when system representations vary from fully equation-based (white-box) to entirely data-driven (black-box) models. While grey-box MOO methods attempt to bridge this gap, they typically impose rigid assumptions on system structure, requiring models to conform to the underlying structural assumptions of the solver rather than the solver adapting to the natural representation of the system of interest. In this chapter, we introduce a unifying approach to grey-box MOO by leveraging network representations, which provide a general and flexible framework for modeling interconnected systems as a series of function nodes that share various inputs and outputs. Specifically, we propose MOBONS, a novel Bayesian optimization-inspired algorithm that can efficiently optimize general function networks, including those with cyclic dependencies, enabling the modeling of feedback loops, recycle streams, and multi-scale simulations - features that existing methods fail to capture. Furthermore, MOBONS incorporates constraints, supports parallel evaluations, and preserves the sample efficiency of Bayesian optimization while leveraging network structure for improved scalability. We demonstrate the effectiveness of MOBONS through two case studies, including one related to sustainable process design. By enabling efficient MOO under general graph representations, MOBONS has the potential to significantly enhance the design of more profitable, resilient, and sustainable engineering systems.
- Abstract(参考訳): 近代的な産業システムの設計には、利益性、レジリエンス、持続可能性といったいくつかの競合する目標のバランスが必要であり、一方で技術、経済、環境要素間の複雑な相互作用も考慮する必要がある。
マルチオブジェクト最適化(MOO)法は、これらのトレードオフをナビゲートするために一般的に用いられるが、これらの問題に対処する適切なアルゴリズムを選択することは、特にシステム表現が完全な方程式ベース(ホワイトボックス)から完全にデータ駆動(ブラックボックス)モデルに変化する場合、しばしば不明確である。
グレーボックスMOO法はこのギャップを埋めようとするが、通常はシステム構造に厳密な仮定を課し、モデルが関心のシステムの自然な表現に適応する解法よりも、解法の基盤となる構造的仮定に従わなければならない。
本章では,ネットワーク表現を活用することでグレーボックスMOOへの統一的アプローチを導入し,様々な入力や出力を共有する一連の関数ノードとして相互接続系をモデル化するための汎用的で柔軟なフレームワークを提供する。
具体的には,周期依存型ネットワークを含む一般関数ネットワークを効率的に最適化し,フィードバックループ,リサイクルストリーム,マルチスケールシミュレーションのモデリングを可能にする,ベイズ最適化にインスパイアされた新しいアルゴリズムMOBONSを提案する。
さらに、MOBONSは制約を取り入れ、並列評価をサポートし、ベイズ最適化のサンプル効率を保ちながら、ネットワーク構造を利用してスケーラビリティを向上させる。
持続可能なプロセス設計を含む2つのケーススタディを通じて,MOBONSの有効性を実証する。
汎用グラフ表現の下で効率的なMOOを実現することで、MOBONSはより利益があり、回復力があり、持続可能なエンジニアリングシステムの設計を大幅に強化する可能性がある。
関連論文リスト
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLMは任意の形状の大規模言語モデルの即時導出を可能にする新しいフレームワークである。
AmoebaLLMは、様々なプラットフォームやアプリケーションに適した迅速なデプロイメントを著しく促進する。
論文 参考訳(メタデータ) (2024-11-15T22:02:28Z) - Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models [16.16372459671255]
大規模言語モデル(LLM)は通常、固定された計算予算を使用してトークンによって出力トークンを生成する。
LLMの各フィードフォワードネットワーク層に小さな補助モジュールを統合する新しいフレームワークを提案する。
訓練されたルータがオーラクルと異なる動作をしており、しばしば準最適解が得られることを示す。
論文 参考訳(メタデータ) (2024-10-01T16:10:21Z) - Optimization of geological carbon storage operations with multimodal latent dynamic model and deep reinforcement learning [1.8549313085249324]
本稿では,高速フロー予測とGCSの制御最適化のためのディープラーニングフレームワークであるMLDモデルを紹介する。
既存のモデルとは異なり、MDDは多様な入力モダリティをサポートし、包括的なデータインタラクションを可能にする。
この手法は従来の手法よりも優れており、計算資源を60%以上削減し、最も高いNPVを達成する。
論文 参考訳(メタデータ) (2024-06-07T01:30:21Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - Multi-Fidelity Bayesian Optimization via Deep Neural Networks [19.699020509495437]
多くのアプリケーションでは、目的関数を複数の忠実度で評価することで、コストと精度のトレードオフを可能にする。
本稿では,DNN-MFBO(Deep Neural Network Multi-Fidelity Bayesian Optimization)を提案する。
本手法の利点は, 総合的なベンチマークデータセットと, 工学設計における実世界の応用の両方にある。
論文 参考訳(メタデータ) (2020-07-06T23:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。