Design nearly optimal quantum algorithm for linear differential equations via Lindbladians
- URL: http://arxiv.org/abs/2410.19628v2
- Date: Tue, 29 Oct 2024 04:54:41 GMT
- Title: Design nearly optimal quantum algorithm for linear differential equations via Lindbladians
- Authors: Zhong-Xia Shang, Naixu Guo, Dong An, Qi Zhao,
- Abstract summary: We propose a new quantum algorithm for ODEs by harnessing open quantum systems.
We use the natural non-unitary dynamics of Lindbladians with the aid of a new technique called the non-diagonal density matrix encoding.
Our algorithm can outperform all existing quantum ODE algorithms and achieve near-optimal dependence on all parameters.
- Score: 11.53984890996377
- License:
- Abstract: Solving linear ordinary differential equations (ODE) is one of the most promising applications for quantum computers to demonstrate exponential advantages. The challenge of designing a quantum ODE algorithm is how to embed non-unitary dynamics into intrinsically unitary quantum circuits. In this work, we propose a new quantum algorithm for ODEs by harnessing open quantum systems. Specifically, we utilize the natural non-unitary dynamics of Lindbladians with the aid of a new technique called the non-diagonal density matrix encoding to encode general linear ODEs into non-diagonal blocks of density matrices. This framework enables us to design a quantum algorithm that has both theoretical simplicity and good performance. Combined with the state-of-the-art quantum Lindbladian simulation algorithms, our algorithm, under a plausible input model, can outperform all existing quantum ODE algorithms and achieve near-optimal dependence on all parameters. We also give applications of our algorithm including the Gibbs state preparations and the partition function estimations.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Variational Quantum Algorithms for Simulation of Lindblad Dynamics [0.0]
We introduce a variational hybrid classical-quantum algorithm to simulate the Lindblad master equation and its adjoint for time-evolving Markovian open quantum systems and quantum observables.
We design and optimize low-depth variational quantum circuits that efficiently capture the unitary and non-unitary dynamics of the solutions.
arXiv Detail & Related papers (2023-05-04T13:25:44Z) - A theory of quantum differential equation solvers: limitations and
fast-forwarding [19.080267236745623]
We show that quantum algorithms suffer from computational overheads due to two types of non-quantumness''
We then show that ODEs in the absence of both types of non-quantumness'' are equivalent to quantum dynamics.
We show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency.
arXiv Detail & Related papers (2022-11-09T22:50:14Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.