論文の概要: The Impact and Feasibility of Self-Confidence Shaping for AI-Assisted Decision-Making
- arxiv url: http://arxiv.org/abs/2502.14311v1
- Date: Thu, 20 Feb 2025 06:55:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:58.770960
- Title: The Impact and Feasibility of Self-Confidence Shaping for AI-Assisted Decision-Making
- Title(参考訳): AIを用いた意思決定における自信形成の効果と可能性
- Authors: Takehiro Takayanagi, Ryuji Hashimoto, Chung-Chi Chen, Kiyoshi Izumi,
- Abstract要約: 本稿では,目標レベルにおける自己自信の校正を目的とした自己自信形成の介入について述べる。
我々は,AIの信頼度と信頼度を両立させることにより,自己自信形成が人間-AIチームのパフォーマンスを50%近く向上させることができることを示した。
感情と自己自信の関係は、感情を変えることが自己自信を形成するための実行可能な戦略になり得ることを示唆している。
- 参考スコア(独自算出の注目度): 6.852960508141108
- License:
- Abstract: In AI-assisted decision-making, it is crucial but challenging for humans to appropriately rely on AI, especially in high-stakes domains such as finance and healthcare. This paper addresses this problem from a human-centered perspective by presenting an intervention for self-confidence shaping, designed to calibrate self-confidence at a targeted level. We first demonstrate the impact of self-confidence shaping by quantifying the upper-bound improvement in human-AI team performance. Our behavioral experiments with 121 participants show that self-confidence shaping can improve human-AI team performance by nearly 50% by mitigating both over- and under-reliance on AI. We then introduce a self-confidence prediction task to identify when our intervention is needed. Our results show that simple machine-learning models achieve 67% accuracy in predicting self-confidence. We further illustrate the feasibility of such interventions. The observed relationship between sentiment and self-confidence suggests that modifying sentiment could be a viable strategy for shaping self-confidence. Finally, we outline future research directions to support the deployment of self-confidence shaping in a real-world scenario for effective human-AI collaboration.
- Abstract(参考訳): AIによる意思決定では、人間はAIに適切に依存することが不可欠だが、特に金融や医療といった高度な領域では難しい。
本稿では,人間中心の視点からこの問題に対処し,目標レベルでの自己自信の校正を目的とした自己自信形成の介入を提示する。
まず、人間-AIチームパフォーマンスの上限改善を定量化することにより、自己自信形成の影響を実証する。
121人の参加者による行動実験は、自己自信の形成がAIに対する過度な信頼と過度な信頼の両方を緩和することにより、人間とAIチームのパフォーマンスを50%近く改善できることを示している。
次に、介入が必要なタイミングを特定するために、自信の予測タスクを導入します。
その結果,単純な機械学習モデルでは自信の予測に67%の精度が得られた。
このような介入の可能性をさらに説明します。
感情と自己自信の関係は、感情を変えることが自己自信を形成するための実行可能な戦略になり得ることを示唆している。
最後に、人間とAIの効果的なコラボレーションのための現実シナリオにおける自己自信形成の展開を支援するための今後の研究方針について概説する。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
最適な人間とAIのコラボレーションのためのビジョンは、人間のAIシステムへの「適切な依存」を必要とする。
実際には、アウト・オブ・ディストリビューションデータにおける機械学習モデルの性能格差は、データセット固有のパフォーマンスフィードバックを信頼できないものにしている。
論文 参考訳(メタデータ) (2024-09-22T09:43:27Z) - Overconfident and Unconfident AI Hinder Human-AI Collaboration [5.480154202794587]
本研究は,AIに対するユーザの信頼度,AIアドバイスの採用,コラボレーション結果に及ぼすAI信頼度の影響について検討する。
信頼度調整支援の欠如は、未調整の信頼度の検出を困難にすることでこの問題を悪化させる。
我々の研究は、人間とAIのコラボレーションを強化するためのAI信頼度校正の重要性を強調した。
論文 参考訳(メタデータ) (2024-02-12T13:16:30Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
現代のNLPシステムは、しばしば未分類であり、ユーザの信頼を損なう確実な誤った予測をもたらす。
賭けゲームを用いて,信頼を損なう事象に対するユーザの信頼の進化について検討する。
論文 参考訳(メタデータ) (2023-10-20T14:41:46Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
本稿では、Dunning-Kruger Effect(DKE)がAIシステムへの適切な依存を妨げているかどうかを論じる。
DKEは、能力の低い個人が自身のスキルやパフォーマンスを過大評価しているため、メタ認知バイアスである。
その結果、パフォーマンスを過大評価する参加者は、AIシステムへの信頼度が低い傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-01-25T14:26:10Z) - Who Should I Trust: AI or Myself? Leveraging Human and AI Correctness
Likelihood to Promote Appropriate Trust in AI-Assisted Decision-Making [36.50604819969994]
AIによる意思決定では、人間の意思決定者がいつAIを信頼するか、いつ自分自身を信頼するかを知ることが重要である。
我々は、意思決定モデルを近似し、同様の事例で潜在的なパフォーマンスを計算することで、人間のCLをモデル化した。
我々は,AIによる意思決定プロセスにおいて,ユーザの信頼を明確かつシンプルに調整するための3つのCL活用戦略を提案した。
論文 参考訳(メタデータ) (2023-01-14T02:51:01Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
我々は、社会学の対人信頼(すなわち、人間の信頼)に着想を得た信頼のモデルについて議論する。
ユーザとAIの間の信頼は、暗黙的あるいは明示的な契約が保持する信頼である。
我々は、信頼できるAIの設計方法、信頼が浮かび上がったかどうか、保証されているかどうかを評価する方法について論じる。
論文 参考訳(メタデータ) (2020-10-15T03:07:23Z) - AvE: Assistance via Empowerment [77.08882807208461]
そこで我々は,人間の環境制御能力を高めることで,支援のための新しいパラダイムを提案する。
このタスクに依存しない目的は、個人の自律性と最終的な状態を達成する能力を維持する。
論文 参考訳(メタデータ) (2020-06-26T04:40:11Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。