Purest Quantum State Identification
- URL: http://arxiv.org/abs/2502.14334v1
- Date: Thu, 20 Feb 2025 07:42:16 GMT
- Title: Purest Quantum State Identification
- Authors: Yingqi Yu, Honglin Chen, Jun Wu, Wei Xie, Xiangyang Li,
- Abstract summary: We design methods for identifying the purest one within $K$ unknown $n$-qubit quantum states using $N$ samples.
This framework provides concrete design principles for overcoming sampling bottlenecks in quantum technologies.
- Score: 13.974066377698044
- License:
- Abstract: Precise identification of quantum states under noise constraints is essential for quantum information processing. In this study, we generalize the classical best arm identification problem to quantum domains, designing methods for identifying the purest one within $K$ unknown $n$-qubit quantum states using $N$ samples. %, with direct applications in quantum computation and quantum communication. We propose two distinct algorithms: (1) an algorithm employing incoherent measurements, achieving error $\exp\left(- \Omega\left(\frac{N H_1}{\log(K) 2^n }\right) \right)$, and (2) an algorithm utilizing coherent measurements, achieving error $\exp\left(- \Omega\left(\frac{N H_2}{\log(K) }\right) \right)$, highlighting the power of quantum memory. Furthermore, we establish a lower bound by proving that all strategies with fixed two-outcome incoherent POVM must suffer error probability exceeding $ \exp\left( - O\left(\frac{NH_1}{2^n}\right)\right)$. This framework provides concrete design principles for overcoming sampling bottlenecks in quantum technologies.
Related papers
- Estimating quantum amplitudes can be exponentially improved [11.282486674587236]
Estimating quantum amplitude (the overlap between two quantum states) is a fundamental task in quantum computing.
We present a novel algorithmic framework for estimating quantum amplitudes by transforming pure states into matrix forms.
Our framework achieves the standard quantum limit $epsilon-2$ and the Heisenberg limit $epsilon-1$, respectively.
arXiv Detail & Related papers (2024-08-25T04:35:53Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - $\mathcal{PT}$-symmetric mapping of three states and its implementation on a cloud quantum processor [0.9599644507730107]
We develop a new $mathcalPT$-symmetric approach for mapping three pure qubit states.
We show consistency with the Hermitian case, conservation of average projections on reference vectors, and Quantum Fisher Information.
Our work unlocks new doors for applying $mathcalPT$-symmetry in quantum communication, computing, and cryptography.
arXiv Detail & Related papers (2023-12-27T18:51:33Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - Improving the speed of variational quantum algorithms for quantum error
correction [7.608765913950182]
We consider the problem of devising a suitable Quantum Error Correction (QEC) procedures for a generic quantum noise acting on a quantum circuit.
In general, there is no analytic universal procedure to obtain the encoding and correction unitary gates.
We address this problem using a cost function based on the Quantum Wasserstein distance of order 1.
arXiv Detail & Related papers (2023-01-12T19:44:53Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Discriminating Quantum States with Quantum Machine Learning [0.0]
We propose, implement and analyze a quantum k-means (qk-means) algorithm with a low time complexity.
Discriminating quantum states allows the identification of quantum states from low-level in-phase and quadrature signal (IQ) data.
In order to reduce dependency on a classical computer, we use the qk-means to perform state discrimination on the IBMQ Bogota device.
arXiv Detail & Related papers (2021-12-01T07:09:14Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.