論文の概要: Information Types in Product Reviews
- arxiv url: http://arxiv.org/abs/2502.14335v1
- Date: Thu, 20 Feb 2025 07:44:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:12.251791
- Title: Information Types in Product Reviews
- Title(参考訳): 製品レビューにおける情報タイプ
- Authors: Ori Shapira, Yuval Piniter,
- Abstract要約: 製品レビュードメインから24の文のコミュニケーション目標のタイプを考案する。
実験の結果,類型学における授業の組み合わせは,評価の有用性と感情を予測できることがわかった。
レビューで情報の種類を特徴づけることで、このジャンルをより効果的に消費する多くの機会が解放される。
- 参考スコア(独自算出の注目度): 5.202085660445395
- License:
- Abstract: Information in text is communicated in a way that supports a goal for its reader. Product reviews, for example, contain opinions, tips, product descriptions, and many other types of information that provide both direct insights, as well as unexpected signals for downstream applications. We devise a typology of 24 communicative goals in sentences from the product review domain, and employ a zero-shot multi-label classifier that facilitates large-scale analyses of review data. In our experiments, we find that the combination of classes in the typology forecasts helpfulness and sentiment of reviews, while supplying explanations for these decisions. In addition, our typology enables analysis of review intent, effectiveness and rhetorical structure. Characterizing the types of information in reviews unlocks many opportunities for more effective consumption of this genre.
- Abstract(参考訳): テキスト内の情報は、その読者の目標をサポートする方法で通信される。
例えば、製品レビューには、意見、ヒント、製品説明など、直接的な洞察と、下流アプリケーションに対する予期せぬ信号の両方を提供する多くの種類の情報が含まれています。
商品レビュードメインから24の文の共用目標のタイプを考案し、レビューデータの大規模解析を容易にするゼロショットマルチラベル分類器を用いる。
本実験では, 類型学における授業の組み合わせは, 評価の有益性や感情を予測し, それらの判断に説明を与える。
さらに,本研究のタイプは,レビュー意図,有効性,修辞構造の分析を可能にする。
レビューで情報の種類を特徴づけることで、このジャンルをより効果的に消費する多くの機会が解放される。
関連論文リスト
- Aspect-Aware Decomposition for Opinion Summarization [82.38097397662436]
本稿では、アスペクト識別、意見統合、メタレビュー合成のタスクを分離する、レビューアスペクトによってガイドされるモジュラーアプローチを提案する。
科学研究、ビジネス、製品ドメインを表すデータセットをまたいだ実験を行います。
その結果,本手法は強いベースラインモデルと比較して,より基底的なサマリーを生成することがわかった。
論文 参考訳(メタデータ) (2025-01-27T09:29:55Z) - Were You Helpful -- Predicting Helpful Votes from Amazon Reviews [0.0]
本研究は,Amazon製品レビューの有用性に影響を及ぼす要因について,機械学習技術を用いて検討する。
レビュー支援の強力な予測因子として機能する重要なメタデータの特徴を同定する。
この知見は、文脈的およびユーザ行動的要因は、言語内容そのものよりも、レビューの有用性を示す可能性があることを示唆している。
論文 参考訳(メタデータ) (2024-12-03T22:38:58Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
レビュー要約(review summarization)は、Eコマースのウェブサイトで製品レビューのメインの考え方を要約することを目的とした、簡単ではないタスクである。
Heterogeneous Historical Review aware Review Summarization Model (HHRRS)を提案する。
我々は、レビュー感情分類と要約を共同で行うマルチタスクフレームワークを採用している。
論文 参考訳(メタデータ) (2023-01-27T12:32:55Z) - An Exploratory Analysis of Feedback Types Used in Online Coding
Exercises [0.0]
本研究の目的は,CodingBat,Scratch,Blocklyが適用したフィードバックタイプを特定することである。
この研究は、フィードバックタイプ間の明確な境界を特定することの難しさを明らかにした。
論文 参考訳(メタデータ) (2022-06-07T07:52:17Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
31,000以上の製品のユーザレビューと組み合わせた大規模な要約データセットを収集し、教師付きトレーニングを可能にします。
多くのレビューの内容は、人間が書いた要約には反映されず、したがってランダムなレビューサブセットで訓練された要約者は幻覚する。
我々は、これらのサブセットで表現された意見を要約し、レビューの情報的サブセットを選択するための共同学習としてタスクを定式化する。
論文 参考訳(メタデータ) (2021-09-09T15:01:43Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Generating Diversified Comments via Reader-Aware Topic Modeling and
Saliency Detection [25.16392119801612]
生成したコメントの質を高めるために,読者が認識するトピックモデリングとサリエンシー情報検出フレームワークを提案する。
読者対応トピックモデリングのために,読者コメントからの潜在意味学習と話題マイニングのための変分生成クラスタリングアルゴリズムを設計した。
サリエンシー情報検出のために、ニュースコンテンツを推定してサリエンシー情報を選択するBernoulli分布について紹介します。
論文 参考訳(メタデータ) (2021-02-13T03:50:31Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss [51.448615489097236]
ユーザーレビューから正確な要約と感情を取得することは、現代のEコマースプラットフォームにとって不可欠な要素である。
本稿では,これら2つのタスクの性能を協調的に改善する新しいデュアルビューモデルを提案する。
異なる領域の4つの実世界のデータセットに対する実験結果から,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2020-06-02T13:34:11Z) - Topic Detection and Summarization of User Reviews [6.779855791259679]
本稿では,レビューと要約の両方を解析して,効果的な新しい要約手法を提案する。
製品レビューと約1028の製品からなる新しいデータセットが、AmazonとCNETから収集されている。
論文 参考訳(メタデータ) (2020-05-30T02:19:08Z) - Mining customer product reviews for product development: A summarization
process [0.7742297876120561]
本研究は、顧客の好みや嫌いに関連する言葉や表現をオンラインレビューから識別し、構造化し、製品開発を指導することを目的としている。
著者らは,製品価格,感情,使用状況など,ユーザの嗜好の多面性を含む要約モデルを提案する。
ケーススタディでは、提案したモデルとアノテーションガイドラインにより、人間のアノテーションは、高信頼度でオンラインレビューを構造化できることを示した。
論文 参考訳(メタデータ) (2020-01-13T13:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。