PPO-MI: Efficient Black-Box Model Inversion via Proximal Policy Optimization
- URL: http://arxiv.org/abs/2502.14370v1
- Date: Thu, 20 Feb 2025 08:57:45 GMT
- Title: PPO-MI: Efficient Black-Box Model Inversion via Proximal Policy Optimization
- Authors: Xinpeng Shou,
- Abstract summary: Model inversion attacks pose a significant privacy risk by attempting to reconstruct private training data from trained models.
We propose PPO-MI, a novel reinforcement learning-based framework for black-box model inversion attacks.
Our approach formulates the inversion task as a Markov Decision Process, where an agent navigates the latent space of a generative model to reconstruct private training samples.
- Score: 0.0
- License:
- Abstract: Model inversion attacks pose a significant privacy risk by attempting to reconstruct private training data from trained models. Most of the existing methods either depend on gradient estimation or require white-box access to model parameters, which limits their applicability in practical scenarios. In this paper, we propose PPO-MI, a novel reinforcement learning-based framework for black-box model inversion attacks. Our approach formulates the inversion task as a Markov Decision Process, where an agent navigates the latent space of a generative model to reconstruct private training samples using only model predictions. By employing Proximal Policy Optimization (PPO) with a momentum-based state transition mechanism, along with a reward function balancing prediction accuracy and exploration, PPO-MI ensures efficient latent space exploration and high query efficiency. We conduct extensive experiments illustrates that PPO-MI outperforms the existing methods while require less attack knowledge, and it is robust across various model architectures and datasets. These results underline its effectiveness and generalizability in practical black-box scenarios, raising important considerations for the privacy vulnerabilities of deployed machine learning models.
Related papers
- Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction [0.8437187555622164]
"MisGUIDE" is a two-step defense framework for Deep Learning models that disrupts the adversarial sample generation process.
The aim of the proposed defense method is to reduce the accuracy of the cloned model while maintaining accuracy on authentic queries.
arXiv Detail & Related papers (2024-03-27T13:59:21Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
Our research introduces a method for uncertainty estimation.
It enhances any base regression model with reasonable uncertainty estimates.
Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals.
arXiv Detail & Related papers (2023-02-06T14:52:56Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
Model-based reinforcement learning algorithms are more sample efficient than their model-free counterparts.
We propose a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models.
We show that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging tasks.
arXiv Detail & Related papers (2021-12-16T15:33:11Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z) - Model Embedding Model-Based Reinforcement Learning [4.566180616886624]
Model-based reinforcement learning (MBRL) has shown its advantages in sample-efficiency over model-free reinforcement learning (MFRL)
Despite the impressive results it achieves, it still faces a trade-off between the ease of data generation and model bias.
We propose a simple and elegant model-embedding model-based reinforcement learning (MEMB) algorithm in the framework of the probabilistic reinforcement learning.
arXiv Detail & Related papers (2020-06-16T15:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.