M3PO: Massively Multi-Task Model-Based Policy Optimization
- URL: http://arxiv.org/abs/2506.21782v1
- Date: Thu, 26 Jun 2025 21:39:01 GMT
- Title: M3PO: Massively Multi-Task Model-Based Policy Optimization
- Authors: Aditya Narendra, Dmitry Makarov, Aleksandr Panov,
- Abstract summary: We introduce Massively Multi-Task Model-Based Policy Optimization (M3PO), a scalable model-based reinforcement learning framework.<n>M3PO addresses sample inefficiency in single-task settings and poor generalization in multi-task domains.<n>M3PO integrates an implicit world model, trained to predict task outcomes without observation reconstruction, with a hybrid exploration strategy.
- Score: 46.42871544295734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Massively Multi-Task Model-Based Policy Optimization (M3PO), a scalable model-based reinforcement learning (MBRL) framework designed to address sample inefficiency in single-task settings and poor generalization in multi-task domains. Existing model-based approaches like DreamerV3 rely on pixel-level generative models that neglect control-centric representations, while model-free methods such as PPO suffer from high sample complexity and weak exploration. M3PO integrates an implicit world model, trained to predict task outcomes without observation reconstruction, with a hybrid exploration strategy that combines model-based planning and model-free uncertainty-driven bonuses. This eliminates the bias-variance trade-off in prior methods by using discrepancies between model-based and model-free value estimates to guide exploration, while maintaining stable policy updates through a trust-region optimizer. M3PO provides an efficient and robust alternative to existing model-based policy optimization approaches and achieves state-of-the-art performance across multiple benchmarks.
Related papers
- Decision Flow Policy Optimization [53.825268058199825]
We show that generative models can effectively model complex multi-modal action distributions and achieve superior robotic control in continuous action spaces.<n>Previous methods usually adopt the generative models as behavior models to fit state-conditioned action distributions from datasets.<n>We propose Decision Flow, a unified framework that integrates multi-modal action distribution modeling and policy optimization.
arXiv Detail & Related papers (2025-05-26T03:42:20Z) - PPO-MI: Efficient Black-Box Model Inversion via Proximal Policy Optimization [0.0]
Model inversion attacks pose a significant privacy risk by attempting to reconstruct private training data from trained models.<n>We propose PPO-MI, a novel reinforcement learning-based framework for black-box model inversion attacks.<n>Our approach formulates the inversion task as a Markov Decision Process, where an agent navigates the latent space of a generative model to reconstruct private training samples.
arXiv Detail & Related papers (2025-02-20T08:57:45Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Variational Model-based Policy Optimization [34.80171122943031]
Model-based reinforcement learning (RL) algorithms allow us to combine model-generated data with those collected from interaction with the real system in order to alleviate the data efficiency problem in RL.
We propose an objective function as a variational lower-bound of a log-likelihood of a log-likelihood to jointly learn and improve model and policy.
Our experiments on a number of continuous control tasks show that despite being more complex, our model-based (E-step) algorithm, called emactoral model-based policy optimization (VMBPO), is more sample-efficient and
arXiv Detail & Related papers (2020-06-09T18:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.