論文の概要: Reliable Explainability of Deep Learning Spatial-Spectral Classifiers for Improved Semantic Segmentation in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2502.14416v1
- Date: Thu, 20 Feb 2025 10:11:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:35.088318
- Title: Reliable Explainability of Deep Learning Spatial-Spectral Classifiers for Improved Semantic Segmentation in Autonomous Driving
- Title(参考訳): 自律運転におけるセマンティックセグメンテーション改善のための深層学習空間スペクトル分類器の信頼性説明可能性
- Authors: Jon Gutiérrez-Zaballa, Koldo Basterretxea, Javier Echanobe,
- Abstract要約: ハイパースペクトル画像(HSI)とディープニューラルネットワーク(DNN)は、インテリジェントビジョンシステムの精度を高めることができる。
このような安全クリティカルシステムの研究を進めるためには、複雑なDNNの出力に対するスペクトル情報の正確な寄与を決定する必要がある。
入力特徴と予測の関係をよりよく把握するために、関連するDNN層からのアクティベーションと重みによるデータを活用する方法を提案する。
- 参考スコア(独自算出の注目度): 1.474723404975345
- License:
- Abstract: Integrating hyperspectral imagery (HSI) with deep neural networks (DNNs) can strengthen the accuracy of intelligent vision systems by combining spectral and spatial information, which is useful for tasks like semantic segmentation in autonomous driving. To advance research in such safety-critical systems, determining the precise contribution of spectral information to complex DNNs' output is needed. To address this, several saliency methods, such as class activation maps (CAM), have been proposed primarily for image classification. However, recent studies have raised concerns regarding their reliability. In this paper, we address their limitations and propose an alternative approach by leveraging the data provided by activations and weights from relevant DNN layers to better capture the relationship between input features and predictions. The study aims to assess the superior performance of HSI compared to 3-channel and single-channel DNNs. We also address the influence of spectral signature normalization for enhancing DNN robustness in real-world driving conditions.
- Abstract(参考訳): ハイパースペクトル画像(HSI)とディープニューラルネットワーク(DNN)を統合することで、スペクトル情報と空間情報を組み合わせることで、インテリジェントな視覚システムの精度を高めることができる。
このような安全クリティカルシステムの研究を進めるためには、複雑なDNNの出力に対するスペクトル情報の正確な寄与を決定する必要がある。
これを解決するために、主に画像分類のために、クラスアクティベーションマップ(CAM)のようないくつかのサリエンシ手法が提案されている。
しかし、近年の研究で信頼性が懸念されている。
本稿では,これらの制限に対処し,関連するDNN層からのアクティベーションと重みによるデータを利用して,入力特徴と予測の関係をよりよく把握する手法を提案する。
本研究は,3チャンネルDNNやシングルチャネルDNNと比較して,HSIの優れた性能を評価することを目的としている。
また、実世界の運転条件におけるDNNロバスト性を高めるためのスペクトル信号正規化の影響についても検討する。
関連論文リスト
- HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
新しい線形特徴空間におけるハイパースペクトルイメージング(HSI)とLiDARデータの統合は、HSIに固有の高次元性と冗長性に起因する課題に対する有望な解決策を提供する。
本研究では、双方向逆畳み込み畳み込みニューラルネットワーク(CNN)経路と特殊空間解析ブロックを併用した、二重線型融合空間フレームワークを提案する。
提案手法は,データ処理や分類精度を向上するだけでなく,トランスフォーマーなどの先進モデルに係わる計算負担を軽減する。
論文 参考訳(メタデータ) (2024-11-30T01:08:08Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
アスペクトカテゴリー検出(ACD)は、あるレビュー文の中で暗黙的かつ明示的な側面を識別することを目的としている。
本稿では,Deep Neural Networks (DNN) と Gradual Machine Learning (GML) を教師付き環境で組み合わせることで,ACDタスクに取り組む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T07:21:46Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - A Spatial-channel-temporal-fused Attention for Spiking Neural Networks [7.759491656618468]
スパイキングニューラルネットワーク(SNN)は、計算戦略を模倣し、情報処理においてかなりの能力を示す。
本研究では,SNNを誘導し,対象領域を効率的に捕捉する空間チャネル時間拡散アテンション(SCTFA)モジュールを提案する。
論文 参考訳(メタデータ) (2022-09-22T07:45:55Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
我々は、新しいノイズ強調型教師付きオートエンコーダ(NSAE)を用いて、特徴分布のより広範なバリエーションを捉えるようモデルに教える。
NSAEは入力を共同で再構築し、入力のラベルと再構成されたペアを予測することによってモデルを訓練する。
また、NSAE構造を利用して、より適応性を高め、対象領域の分類性能を向上させる2段階の微調整手順を提案する。
論文 参考訳(メタデータ) (2021-08-11T04:45:56Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。