Reliable Explainability of Deep Learning Spatial-Spectral Classifiers for Improved Semantic Segmentation in Autonomous Driving
- URL: http://arxiv.org/abs/2502.14416v1
- Date: Thu, 20 Feb 2025 10:11:27 GMT
- Title: Reliable Explainability of Deep Learning Spatial-Spectral Classifiers for Improved Semantic Segmentation in Autonomous Driving
- Authors: Jon GutiƩrrez-Zaballa, Koldo Basterretxea, Javier Echanobe,
- Abstract summary: Hyperspectral imagery (HSI) and deep neural networks (DNNs) can strengthen the accuracy of intelligent vision systems.
To advance research in such safety-critical systems, determining the precise contribution of spectral information to complex DNNs' output is needed.
We propose an alternative approach by leveraging the data provided by activations and weights from relevant DNN layers to better capture the relationship between input features and predictions.
- Score: 1.474723404975345
- License:
- Abstract: Integrating hyperspectral imagery (HSI) with deep neural networks (DNNs) can strengthen the accuracy of intelligent vision systems by combining spectral and spatial information, which is useful for tasks like semantic segmentation in autonomous driving. To advance research in such safety-critical systems, determining the precise contribution of spectral information to complex DNNs' output is needed. To address this, several saliency methods, such as class activation maps (CAM), have been proposed primarily for image classification. However, recent studies have raised concerns regarding their reliability. In this paper, we address their limitations and propose an alternative approach by leveraging the data provided by activations and weights from relevant DNN layers to better capture the relationship between input features and predictions. The study aims to assess the superior performance of HSI compared to 3-channel and single-channel DNNs. We also address the influence of spectral signature normalization for enhancing DNN robustness in real-world driving conditions.
Related papers
- HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs.
This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block.
The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers.
arXiv Detail & Related papers (2024-11-30T01:08:08Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
This study proposes novel dual-current neural networks (DCNN) to improve the accuracy of fine-grained image classification.
The main novel design features for constructing a weakly supervised learning backbone model DCNN include (a) extracting heterogeneous data, (b) keeping the feature map resolution unchanged, (c) expanding the receptive field, and (d) fusing global representations and local features.
arXiv Detail & Related papers (2024-05-07T07:51:28Z) - Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence.
We propose a novel approach to tackle the ACD task by combining Deep Neural Networks (DNNs) with Gradual Machine Learning (GML) in a supervised setting.
arXiv Detail & Related papers (2024-04-08T07:21:46Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - A Spatial-channel-temporal-fused Attention for Spiking Neural Networks [7.759491656618468]
Spiking neural networks (SNNs) mimic computational strategies, and exhibit substantial capabilities in processing information.
We propose a new spatial-channel-temporal-fused attention (SCTFA) module that can guide SNNs to efficiently capture underlying target regions.
arXiv Detail & Related papers (2022-09-22T07:45:55Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications.
In other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations.
We propose a novel framework to test the robustness of current state-of-the-art models.
arXiv Detail & Related papers (2021-03-27T19:58:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.