Distribution Matching for Self-Supervised Transfer Learning
- URL: http://arxiv.org/abs/2502.14424v1
- Date: Thu, 20 Feb 2025 10:20:56 GMT
- Title: Distribution Matching for Self-Supervised Transfer Learning
- Authors: Yuling Jiao, Wensen Ma, Defeng Sun, Hansheng Wang, Yang Wang,
- Abstract summary: We propose a novel self-supervised transfer learning method called Distribution Matching.
We show that DM performs competitively on target classification tasks compared to existing self-supervised transfer learning methods.
We provide robust theoretical guarantees for DM, including a population theorem and an end-to-end sample theorem.
- Score: 9.549045683389085
- License:
- Abstract: In this paper, we propose a novel self-supervised transfer learning method called Distribution Matching (DM), which drives the representation distribution toward a predefined reference distribution while preserving augmentation invariance. The design of DM results in a learned representation space that is intuitively structured and offers easily interpretable hyperparameters. Experimental results across multiple real-world datasets and evaluation metrics demonstrate that DM performs competitively on target classification tasks compared to existing self-supervised transfer learning methods. Additionally, we provide robust theoretical guarantees for DM, including a population theorem and an end-to-end sample theorem. The population theorem bridges the gap between the self-supervised learning task and target classification accuracy, while the sample theorem shows that, even with a limited number of samples from the target domain, DM can deliver exceptional classification performance, provided the unlabeled sample size is sufficiently large.
Related papers
- Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax [73.03684002513218]
We enhance Deep InfoMax (DIM) to enable automatic matching of learned representations to a selected prior distribution.
We show that such modification allows for learning uniformly and normally distributed representations.
The results indicate a moderate trade-off between the performance on the downstream tasks and quality of DM.
arXiv Detail & Related papers (2024-10-09T15:40:04Z) - Unsupervised Transfer Learning via Adversarial Contrastive Training [3.227277661633986]
We propose a novel unsupervised transfer learning approach using adversarial contrastive training (ACT)
Our experimental results demonstrate outstanding classification accuracy with both fine-tuned linear probe and K-NN protocol across various datasets.
arXiv Detail & Related papers (2024-08-16T05:11:52Z) - Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
We introduce a novel generative model for the representation of joint probability distributions of discrete random variables.
The approach uses measure transport by randomized assignment flows on the statistical submanifold of factorizing distributions.
arXiv Detail & Related papers (2024-06-06T21:58:33Z) - A Distributional Analogue to the Successor Representation [54.99439648059807]
This paper contributes a new approach for distributional reinforcement learning.
It elucidates a clean separation of transition structure and reward in the learning process.
As an illustration, we show that it enables zero-shot risk-sensitive policy evaluation.
arXiv Detail & Related papers (2024-02-13T15:35:24Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
We propose a portable Distribution Shift Inversion algorithm for Out-of-Distribution (OoD) prediction.
We show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.
arXiv Detail & Related papers (2023-06-14T08:00:49Z) - On Reinforcement Learning and Distribution Matching for Fine-Tuning
Language Models with no Catastrophic Forgetting [5.5302127686575435]
Two main paradigms have emerged to tackle this challenge: Reward Maximization (RM) and, more recently, Distribution Matching (DM)
We show that methods such as KL-control developed for RM can also be construed as belonging to DM.
We leverage connections between the two paradigms to import the concept of baseline into DM methods.
arXiv Detail & Related papers (2022-06-01T20:54:41Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Multi-Class Data Description for Out-of-distribution Detection [25.853322158250435]
Deep-MCDD is effective to detect out-of-distribution (OOD) samples as well as classify in-distribution (ID) samples.
By integrating the concept of Gaussian discriminant analysis into deep neural networks, we propose a deep learning objective to learn class-conditional distributions.
arXiv Detail & Related papers (2021-04-02T08:41:51Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.