論文の概要: Stories that (are) Move(d by) Markets: A Causal Exploration of Market Shocks and Semantic Shifts across Different Partisan Groups
- arxiv url: http://arxiv.org/abs/2502.14497v1
- Date: Thu, 20 Feb 2025 12:26:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 17:43:59.593892
- Title: Stories that (are) Move(d by) Markets: A Causal Exploration of Market Shocks and Semantic Shifts across Different Partisan Groups
- Title(参考訳): 市場を移動させる(d by)ストーリー: 異なるパルチザングループ間での市場衝撃とセマンティックシフトの因果探究
- Authors: Felix Drinkall, Stefan Zohren, Michael McMahon, Janet B. Pierrehumbert,
- Abstract要約: セマンティックな埋め込み空間の変化は、金融市場の衝撃と因果関係があることが示される。
市場変動に対するテキストの予測力と、それらのショックに対する形状反応に、パルチザンがどのような影響を及ぼすかを示す。
- 参考スコア(独自算出の注目度): 15.661920010658626
- License:
- Abstract: Macroeconomic fluctuations and the narratives that shape them form a mutually reinforcing cycle: public discourse can spur behavioural changes leading to economic shifts, which then result in changes in the stories that propagate. We show that shifts in semantic embedding space can be causally linked to financial market shocks -- deviations from the expected market behaviour. Furthermore, we show how partisanship can influence the predictive power of text for market fluctuations and shape reactions to those same shocks. We also provide some evidence that text-based signals are particularly salient during unexpected events such as COVID-19, highlighting the value of language data as an exogenous variable in economic forecasting. Our findings underscore the bidirectional relationship between news outlets and market shocks, offering a novel empirical approach to studying their effect on each other.
- Abstract(参考訳): マクロ経済の変動とそれらを形作る物語は相互に強化するサイクルを形成し、公共の談話は経済の変化につながる行動の変化を刺激し、それが伝播する物語の変化をもたらす。
セマンティックな埋め込み空間の変化は、期待される市場行動からの逸脱である金融市場のショックと因果関係があることを示します。
さらに, 市場変動に対するテキストの予測力や, 同じショックに対する形状反応に, パルチザンがどのような影響を及ぼすかを示す。
また、新型コロナウイルスなどの予期せぬイベントにおいて、テキストベースの信号が特に健全であることを示す証拠も提示し、経済予測における外因性変数としての言語データの価値を強調した。
以上の結果から,ニュースメディアと市場ショックの双方向的関係を浮き彫りにし,その相互効果を新たな実証的アプローチで研究した。
関連論文リスト
- Indexing and Visualization of Climate Change Narratives Using BERT and Causal Extraction [2.7325857919669327]
本稿では,2つの自然言語処理手法であるBERT(Bidirectional Representations from Transformers)と因果抽出を用いて,気候変動に関する新聞記事の分析を行う。
方法論の斬新さは、新聞の著者が仮定する因果関係を抽出し、定量化することができた。
論文 参考訳(メタデータ) (2024-08-03T11:05:41Z) - Stock Movement and Volatility Prediction from Tweets, Macroeconomic
Factors and Historical Prices [20.574163667057476]
株式市場の予測にツイートデータを使用した以前の研究は、3つの課題に直面した。
ECONには、大量のツイートデータを効率的に抽出し、デコードするアデプトツイートフィルタがある。
意味空間における自己認識機構を通じて、ストック、セクター、マクロ経済要因間の多水準関係を識別する。
論文 参考訳(メタデータ) (2023-12-04T22:27:43Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - The Battle of Information Representations: Comparing Sentiment and
Semantic Features for Forecasting Market Trends [0.5249805590164902]
市場の動向を予測するための感情属性よりも文脈埋め込みの形での意味的特徴が重要であるかを検討する。
当社は、NASDAQの資本化による大手企業に関連するTwitter投稿のコーパスとその価格設定について検討する。
以上の結果から,感情的特徴の活用により,有意な頻度で測定値が上昇することが示唆された。
論文 参考訳(メタデータ) (2023-03-24T18:30:15Z) - Opinion Market Model: Stemming Far-Right Opinion Spread using Positive Interventions [4.635820333232681]
本稿では,相互意見の相互作用と肯定的介入の役割を両立する2層オンライン世論エコシステムモデルを提案する。
我々は2つの学習タスクでOMMをテストし、2つの実世界のデータセットを適用して市場シェアを予測し、オンラインアイテム間の潜伏関係を明らかにする。
OMMは、両方のデータセットで最先端の予測モデルより優れており、潜在的な協調競合関係を捉えている。
論文 参考訳(メタデータ) (2022-08-13T10:36:04Z) - Forecasting with Economic News [0.9281671380673304]
我々は、関心の期間に意味的に依存する記事のテキストのみを考慮する。
経済センチメントのいくつかの指標が、ビジネスサイクルのゆらぎを密に追跡していることがわかった。
また、いくつかのマクロ経済変数の確率分布のテールを説明する上で、感情が重要であることも確認した。
論文 参考訳(メタデータ) (2022-03-29T15:46:42Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
ソーシャルソフトアテンショングラフ畳み込みネットワーク(SSAGCN)という新しい予測モデルを提案する。
SSAGCNは、歩行者間の社会的相互作用と歩行者と環境間のシーンインタラクションを同時に扱うことを目的としている。
公開データセットの実験は、SAGCNの有効性を証明し、最先端の結果を得た。
論文 参考訳(メタデータ) (2021-12-05T01:49:18Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - Adversarial trading [91.3755431537592]
取引環境では敵のサンプルを実装でき、特定の市場参加者に悪影響を及ぼすことを示す。
これは、取引または規制の観点から、金融市場にはるかに影響する可能性があります。
論文 参考訳(メタデータ) (2020-12-16T16:08:22Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。