論文の概要: LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization
- arxiv url: http://arxiv.org/abs/2502.14538v1
- Date: Thu, 20 Feb 2025 13:14:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:27:58.888478
- Title: LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization
- Title(参考訳): LoRA-GGPO: 勾配誘導摂動最適化によるLoRAファインチューニングにおける二重発振の緩和
- Authors: Yupeng Chang, Chenlu Guo, Yi Chang, Yuan Wu,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理において顕著な成功を収めた。
Low-Rank Adaptation (LoRA)は、パラメータ更新を低ランク行列で近似することで、実用的なソリューションとして登場した。
LoRA-GGPOは、勾配とウェイトノルムを利用して標的摂動を生成する新しい手法である。
- 参考スコア(独自算出の注目度): 12.504723188498
- License:
- Abstract: Large Language Models (LLMs) have achieved remarkable success in natural language processing, but their full fine-tuning remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), have emerged as a practical solution by approximating parameter updates with low-rank matrices. However, LoRA often exhibits a "double descent" phenomenon during fine-tuning, where model performance degrades due to overfitting and limited expressiveness caused by low-rank constraints. To address this issue, we propose LoRA-GGPO (Gradient-Guided Perturbation Optimization), a novel method that leverages gradient and weight norms to generate targeted perturbations. By optimizing the sharpness of the loss landscape, LoRA-GGPO guides the model toward flatter minima, mitigating the double descent problem and improving generalization. Extensive experiments on natural language understanding (NLU) and generation (NLG) tasks demonstrate that LoRA-GGPO outperforms LoRA and its state-of-the-art variants. Furthermore, extended experiments specifically designed to analyze the double descent phenomenon confirm that LoRA-GGPO effectively alleviates this issue, producing more robust and generalizable models. Our work provides a robust and efficient solution for fine-tuning LLMs, with broad applicability in real-world scenarios. The code is available at https://github.com/llm172/LoRA-GGPO.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理において顕著な成功を収めてきたが、その完全な微調整は依然として資源集約型である。
Low-Rank Adaptation (LoRA) などのPEFT法は, パラメータ更新を低ランク行列で近似することにより, 実用的な解法として現れる。
しかし、LoRAはしばしば微調整中に「二重降下」現象を示し、そこではモデル性能は過度な適合と低ランク制約による限定表現性によって劣化する。
この問題に対処するために,勾配と重みのノルムを利用して目標摂動を生成する新しい手法であるLoRA-GGPO(Gradient-Guided Perturbation Optimization)を提案する。
ロスランドスケープのシャープネスを最適化することにより、LoRA-GGPOはモデルをフラットなミニマへ誘導し、二重降下問題を緩和し、一般化を改善する。
自然言語理解(NLU)と生成(NLG)タスクに関する大規模な実験は、LoRA-GGPOがLoRAとその最先端の変種より優れていることを示した。
さらに、二重降下現象を分析するために特別に設計された拡張実験により、LoRA-GGPOがこの問題を効果的に軽減し、より堅牢で一般化可能なモデルを生成することが確認された。
我々の研究は、実世界のシナリオで広く適用可能な、細調整のLLMに対して、堅牢で効率的なソリューションを提供する。
コードはhttps://github.com/llm172/LoRA-GGPOで公開されている。
関連論文リスト
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - NoRA: Nested Low-Rank Adaptation for Efficient Fine-Tuning Large Models [27.757883818520217]
Nested Low-Rank Adaptation (NoRA) はパラメータ効率の良い微調整のための新しいアプローチである。
外部のLoRA重みを凍結し、内部のLoRA設計を使用することで、NORAはコンパクトなパラメータ空間で正確なタスク適応を可能にする。
論文 参考訳(メタデータ) (2024-08-18T12:18:56Z) - BA-LoRA: Bias-Alleviating Low-Rank Adaptation to Mitigate Catastrophic Inheritance in Large Language Models [13.660511750245245]
この研究は、バイアス継承に対抗するために設計された新しいPEFT法であるBias-Alleviating Low-Rank Adaptation (BA-LoRA)を導入している。
BA-LoRAは、(1)整合正則化器、(2)多様性正則化器、(3)特異値分解正則化器の3つの異なる正則化項を含む。
その結果、BA-LoRAはLoRAとその最先端の変種よりも優れていた。
論文 参考訳(メタデータ) (2024-08-08T16:13:26Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。