CER: Confidence Enhanced Reasoning in LLMs
- URL: http://arxiv.org/abs/2502.14634v1
- Date: Thu, 20 Feb 2025 15:16:42 GMT
- Title: CER: Confidence Enhanced Reasoning in LLMs
- Authors: Ali Razghandi, Seyed Mohammad Hadi Hosseini, Mahdieh Soleymani Baghshah,
- Abstract summary: We introduce an uncertainty-aware framework designed to enhance the accuracy of Large Language Models responses.
We quantify the confidence of intermediate answers such as numerical results in mathematical reasoning and proper nouns in open-domain generation.
Results consistently validate the effectiveness of our novel confidence aggregation method.
- Score: 2.4392539322920763
- License:
- Abstract: Ensuring the reliability of Large Language Models (LLMs) in complex reasoning tasks remains a formidable challenge, particularly in scenarios that demand precise mathematical calculations and knowledge-intensive open-domain generation. In this work, we introduce an uncertainty-aware framework designed to enhance the accuracy of LLM responses by systematically incorporating model confidence at critical decision points. We propose an approach that encourages multi-step reasoning in LLMs and quantify the confidence of intermediate answers such as numerical results in mathematical reasoning and proper nouns in open-domain generation. Then, the overall confidence of each reasoning chain is evaluated based on confidence of these critical intermediate steps. Finally, we aggregate the answer of generated response paths in a way that reflects the reliability of each generated content (as opposed to self-consistency in which each generated chain contributes equally to majority voting). We conducted extensive experiments in five datasets, three mathematical datasets and two open-domain datasets, using four LLMs. The results consistently validate the effectiveness of our novel confidence aggregation method, leading to an accuracy improvement of up to 7.4% and 5.8% over baseline approaches in math and open-domain generation tasks, respectively. Code is publicly available at https://github.com/ Aquasar11/CER.
Related papers
- Towards Fully Exploiting LLM Internal States to Enhance Knowledge Boundary Perception [58.62352010928591]
Large language models (LLMs) exhibit impressive performance across diverse tasks but often struggle to accurately gauge their knowledge boundaries.
This paper explores leveraging LLMs' internal states to enhance their perception of knowledge boundaries from efficiency and risk perspectives.
arXiv Detail & Related papers (2025-02-17T11:11:09Z) - Confidence Improves Self-Consistency in LLMs [9.764747744761085]
We introduce Confidence-Informed Self-Consistency (CISC)
CISC performs a weighted majority vote based on confidence scores obtained directly from the model.
When tested on nine models and four datasets, CISC outperforms self-consistency in nearly all configurations.
arXiv Detail & Related papers (2025-02-10T08:10:29Z) - Aligning Large Language Models for Faithful Integrity Against Opposing Argument [71.33552795870544]
Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks.
They can be easily misled by unfaithful arguments during conversations, even when their original statements are correct.
We propose a novel framework, named Alignment for Faithful Integrity with Confidence Estimation.
arXiv Detail & Related papers (2025-01-02T16:38:21Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
Uncertainty quantification for large language models (LLMs) can establish more human trust into their responses.
This work focuses on asking the LLM itself to verbalize its uncertainty with a confidence score as part of its output tokens.
We assess the reliability of verbalized confidence scores with respect to different datasets, models, and prompt methods.
arXiv Detail & Related papers (2024-12-19T11:10:36Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
We propose a Fact-Level framework that calibrates confidence to relevance-weighted correctness at the fact level.
We also develop Confidence-Guided Fact-level Self-Correction ($textbfConFix$), which uses high-confidence facts within a response as additional knowledge to improve low-confidence ones.
arXiv Detail & Related papers (2024-11-20T14:15:18Z) - Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
We propose a novel method to develop a well-calibrated confidence estimation model.
We use a weighted graph to represent the consistency among the large language models' responses to a question.
We then train a graph neural network to estimate the probability of correct responses.
arXiv Detail & Related papers (2024-11-03T20:36:44Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.