Explanations of Deep Language Models Explain Language Representations in the Brain
- URL: http://arxiv.org/abs/2502.14671v1
- Date: Thu, 20 Feb 2025 16:05:45 GMT
- Title: Explanations of Deep Language Models Explain Language Representations in the Brain
- Authors: Maryam Rahimi, Yadollah Yaghoobzadeh, Mohammad Reza Daliri,
- Abstract summary: Large language models (LLMs) achieve human-like performance and share computational principles with the brain's language processing mechanisms.
Recent advances have given rise to large language models (LLMs) that not only achieve human-like performance but also share computational principles with the brain's language processing mechanisms.
- Score: 5.7916055414970895
- License:
- Abstract: Recent advances in artificial intelligence have given rise to large language models (LLMs) that not only achieve human-like performance but also share computational principles with the brain's language processing mechanisms. While previous research has primarily focused on aligning LLMs' internal representations with neural activity, we introduce a novel approach that leverages explainable AI (XAI) methods to forge deeper connections between the two domains. Using attribution methods, we quantified how preceding words contribute to an LLM's next-word predictions and employed these explanations to predict fMRI recordings from participants listening to the same narratives. Our findings demonstrate that attribution methods robustly predict brain activity across the language network, surpassing traditional internal representations in early language areas. This alignment is hierarchical: early-layer explanations correspond to the initial stages of language processing in the brain, while later layers align with more advanced stages. Moreover, the layers more influential on LLM next-word prediction$\unicode{x2014}$those with higher attribution scores$\unicode{x2014}$exhibited stronger alignment with neural activity. This work establishes a bidirectional bridge between AI and neuroscience. First, we demonstrate that attribution methods offer a powerful lens for investigating the neural mechanisms of language comprehension, revealing how meaning emerges from preceding context. Second, we propose using brain alignment as a metric to evaluate the validity of attribution methods, providing a framework for assessing their biological plausibility.
Related papers
- Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - What Are Large Language Models Mapping to in the Brain? A Case Against Over-Reliance on Brain Scores [1.8175282137722093]
Internal representations from large language models (LLMs) achieve state-of-the-art brain scores, leading to speculation that they share computational principles with human language processing.
Here, we analyze three neural datasets used in an impactful study on LLM-to-brain mappings, with a particular focus on an fMRI dataset where participants read short passages.
We find that brain scores of trained LLMs on this dataset can largely be explained by sentence length, position, and pronoun-dereferenced static word embeddings.
arXiv Detail & Related papers (2024-06-03T17:13:27Z) - Causal Graph in Language Model Rediscovers Cortical Hierarchy in Human
Narrative Processing [0.0]
Previous studies have demonstrated that the features of language models can be mapped to fMRI brain activity.
This raises the question: is there a commonality between information processing in language models and the human brain?
To estimate information flow patterns in a language model, we examined the causal relationships between different layers.
arXiv Detail & Related papers (2023-11-17T10:09:12Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Divergences between Language Models and Human Brains [59.100552839650774]
We systematically explore the divergences between human and machine language processing.
We identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense.
Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
arXiv Detail & Related papers (2023-11-15T19:02:40Z) - Deep Learning Models to Study Sentence Comprehension in the Human Brain [0.1503974529275767]
Recent artificial neural networks that process natural language achieve unprecedented performance in tasks requiring sentence-level understanding.
We review works that compare these artificial language models with human brain activity and we assess the extent to which this approach has improved our understanding of the neural processes involved in natural language comprehension.
arXiv Detail & Related papers (2023-01-16T10:31:25Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
Self-supervised algorithms trained on the raw waveform constitute a promising candidate.
We show that Wav2Vec 2.0 learns brain-like representations with as little as 600 hours of unlabelled speech.
arXiv Detail & Related papers (2022-06-03T17:01:46Z) - Long-range and hierarchical language predictions in brains and
algorithms [82.81964713263483]
We show that while deep language algorithms are optimized to predict adjacent words, the human brain would be tuned to make long-range and hierarchical predictions.
This study strengthens predictive coding theory and suggests a critical role of long-range and hierarchical predictions in natural language processing.
arXiv Detail & Related papers (2021-11-28T20:26:07Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.