論文の概要: Group-Level Data Selection for Efficient Pretraining
- arxiv url: http://arxiv.org/abs/2502.14709v2
- Date: Fri, 20 Jun 2025 04:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 14:57:51.491558
- Title: Group-Level Data Selection for Efficient Pretraining
- Title(参考訳): 効率的な事前学習のためのグループレベルデータ選択
- Authors: Zichun Yu, Fei Peng, Jie Lei, Arnold Overwijk, Wen-tau Yih, Chenyan Xiong,
- Abstract要約: Group-MATESは、言語モデル事前訓練の速度品質フロンティアを最適化する効率的なグループレベルのデータ選択手法である。
Group-MATESは、リレーショナルデータの影響モデルを用いてコストの高いグループレベルの選択をパラメータ化する。
- 参考スコア(独自算出の注目度): 49.18903821780051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Group-MATES, an efficient group-level data selection approach to optimize the speed-quality frontier of language model pretraining. Specifically, Group-MATES parameterizes costly group-level selection with a relational data influence model. To train this model, we sample training trajectories of the language model and collect oracle data influences alongside. The relational data influence model approximates the oracle data influence by weighting individual influence with relationships among training data. To enable efficient selection with our relational data influence model, we partition the dataset into small clusters using relationship weights and select data within each cluster independently. Experiments on DCLM 400M-4x, 1B-1x, and 3B-1x show that Group-MATES achieves 3.5%-9.4% relative performance gains over random selection across 22 downstream tasks, nearly doubling the improvements achieved by state-of-the-art individual data selection baselines. Furthermore, Group-MATES reduces the number of tokens required to reach a certain downstream performance by up to 1.75x, substantially elevating the speed-quality frontier. Further analyses highlight the critical role of relationship weights in the relational data influence model and the effectiveness of our cluster-based inference. Our code is open-sourced at https://github.com/facebookresearch/Group-MATES.
- Abstract(参考訳): 本稿では,言語モデル事前学習の高速なフロンティアを最適化するグループレベルの効率的なデータ選択手法であるGroup-MATESを紹介する。
特に、Group-MATESは、リレーショナルデータの影響モデルを用いて、コストの高いグループレベルの選択をパラメータ化する。
このモデルをトレーニングするために、言語モデルの学習軌跡をサンプリングし、オラクルデータの影響を同時に収集する。
関係データ影響モデルは、訓練データ間の関係に個人の影響を重み付けすることにより、オラクルデータの影響を近似する。
関係データの影響モデルを効率的に選択するために、関係重みを用いてデータセットを小さなクラスタに分割し、各クラスタ内のデータを独立して選択する。
DCLM 400M-4x, 1B-1x, 3B-1xの実験により、Group-MATESは22の下流タスク間のランダム選択よりも3.5%-9.4%の性能向上を達成した。
さらに、Group-MATESは、特定の下流のパフォーマンスに到達するために必要なトークンの数を最大1.75倍に減らし、スピードクオリティのフロンティアを大幅に高めている。
さらに,リレーショナルデータの影響モデルにおける関係重みの重要性と,クラスタベース推論の有効性を考察した。
私たちのコードはhttps://github.com/facebookresearch/Group-MATESでオープンソース化されています。
関連論文リスト
- Optimize Cardinality Estimation Model Pretraining by Simplifying the Training Datasets [0.0]
既存の事前学習データセットのごく一部に縮小された簡易なトレーニングデータセットを導入する。
この単純化されたデータセットに基づく事前訓練された濃度推定器は、ゼロショット設定で既存のモデルに匹敵する性能を達成できることを示す十分な実験結果が得られた。
論文 参考訳(メタデータ) (2025-02-20T08:06:16Z) - Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
木探索とデータ選択の両方をガイドするデータインフルエンス指向木探索(DITS)を提案する。
インフルエンススコアを活用することで、システム改善のための最も影響力のあるデータを効果的に特定する。
非微分不可能な指標に適した影響スコア推定法を導出する。
論文 参考訳(メタデータ) (2025-02-02T23:20:16Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
本研究では,異なる種類の嗜好データがモデル性能に与える影響について検討する。
収集に費用がかかる大量の好みデータへの依存を減らすことを目的としている。
論文 参考訳(メタデータ) (2024-10-22T00:11:41Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - MATES: Model-Aware Data Selection for Efficient Pretraining with Data Influence Models [16.654859430784825]
手作りのルールやより大きな参照モデルに依存する現在のデータ選択方法は、静的に行われ、事前訓練中に進化するデータ優先をキャプチャしない。
データ影響モデル(MATES)を用いたモデル認識データ選択を導入し、データ影響モデルが事前学習モデルの進化するデータ嗜好に継続的に適応し、現在の事前学習の進行に最も有効なデータを選択する。
C4データセット上で410Mと1Bモデルを事前訓練した実験により、MATESは広範囲な下流タスクにおいてランダムなデータ選択を著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-06-10T06:27:42Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Adaptive Sampling Strategies to Construct Equitable Training Datasets [0.7036032466145111]
コンピュータビジョンから自然言語処理までの領域では、機械学習モデルがスタークの相違を示すことが示されている。
これらのパフォーマンスギャップに寄与する要因の1つは、モデルがトレーニングしたデータに表現力の欠如である。
公平なトレーニングデータセットを作成する際の問題を形式化し、この問題に対処するための統計的枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-31T19:19:30Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
論文 参考訳(メタデータ) (2021-03-05T00:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。