論文の概要: Measuring Faithfulness of Chains of Thought by Unlearning Reasoning Steps
- arxiv url: http://arxiv.org/abs/2502.14829v1
- Date: Thu, 20 Feb 2025 18:45:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:27:48.577968
- Title: Measuring Faithfulness of Chains of Thought by Unlearning Reasoning Steps
- Title(参考訳): 未学習推論ステップによる思考の連鎖の忠実度の測定
- Authors: Martin Tutek, Fateme Hashemi Chaleshtori, Ana Marasović, Yonatan Belinkov,
- Abstract要約: 生成した推論のパラメトリック忠実度を測定するためのフレームワークであるFUR(Unlearning Reasoning Step)を提案する。
FURはモデルパラメータから推論ステップに含まれる情報を消去する。
FURは,CoTがパラメトリックに忠実であることを示す重要なステップを未学習にすることで,基礎となるモデルの予測を頻繁に変更可能であることを示す。
- 参考スコア(独自算出の注目度): 32.60500043302544
- License:
- Abstract: When prompted to think step-by-step, language models (LMs) produce a chain of thought (CoT), a sequence of reasoning steps that the model supposedly used to produce its prediction. However, despite much work on CoT prompting, it is unclear if CoT reasoning is faithful to the models' parameteric beliefs. We introduce a framework for measuring parametric faithfulness of generated reasoning, and propose Faithfulness by Unlearning Reasoning steps (FUR), an instance of this framework. FUR erases information contained in reasoning steps from model parameters. We perform experiments unlearning CoTs of four LMs prompted on four multi-choice question answering (MCQA) datasets. Our experiments show that FUR is frequently able to change the underlying models' prediction by unlearning key steps, indicating when a CoT is parametrically faithful. Further analysis shows that CoTs generated by models post-unlearning support different answers, hinting at a deeper effect of unlearning. Importantly, CoT steps identified as important by FUR do not align well with human notions of plausbility, emphasizing the need for specialized alignment
- Abstract(参考訳): ステップバイステップで考えるように促されると、言語モデル(LM)は思考の連鎖(CoT)を生成する。
しかし、CoTのプロンプトに関する多くの研究にもかかわらず、CoT推論がモデルのパラメータ的信念に忠実かどうかは不明である。
本稿では、生成した推論のパラメトリック忠実度を測定するためのフレームワークを紹介し、このフレームワークの例として、未学習推論ステップ(FUR)による忠実度を提案する。
FURはモデルパラメータから推論ステップに含まれる情報を消去する。
我々は、4つのMulti-choice Question answering (MCQA)データセットに誘導される4つのLMのCoTをアンラーニングする実験を行った。
実験の結果、FURは基礎となるモデルの予測を未学習のキーステップによって頻繁に変更し、CoTがパラメトリックに忠実であることを示す。
さらに分析したところ、学習後のモデルによって生成されたCoTは異なる回答をサポートし、学習後のより深い影響を示唆している。
重要なことは、FURによって重要視されるCoTステップは、ヒトの可視性の概念とうまく一致せず、特別なアライメントの必要性を強調することである。
関連論文リスト
- Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
我々は,情報理論レンズを用いて,大規模言語モデル(LLM)におけるChain-of-Thought(CoT)推論を定式化する。
具体的には、各推論ステップにおける情報ゲインの定量化を行い、障害モードの識別を可能にする。
提案手法の有効性を,玩具およびGSM-8Kデータに対する広範囲な実験により実証し,既存の結果に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-11-18T19:14:36Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
視覚言語モデル(VLM)におけるチェーン・オブ・シント(CoT)推論は、解釈可能性と信頼性を向上させるために不可欠である。
我々は,より詳細な回答を必要とする推論タスクに対して,短時間でVLMを訓練することはよくないことを示す。
論文 参考訳(メタデータ) (2024-10-21T17:00:06Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Latent Causal Probing: A Formal Perspective on Probing with Causal Models of Data [3.376269351435396]
構造因果モデル(SCM)を用いた探索の形式的視点を開発する。
我々は,合成グリッドワールドナビゲーションタスクの文脈において,最近のLMの研究を拡張した。
我々の手法は、LMがテキストの根底にある潜在概念を誘発する能力を示す、堅牢な実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-07-18T17:59:27Z) - Chain-of-Probe: Examing the Necessity and Accuracy of CoT Step-by-Step [81.50681925980135]
モデル推論における心の変化を探索する手法を提案する。
心的変化のパターンを解析することにより,モデルの推論の正しさを検証した。
我々の検証では、最終回答では正しいが、多くの応答が推論プロセスに誤りを含んでいることが明らかになった。
論文 参考訳(メタデータ) (2024-06-23T15:50:22Z) - A Hopfieldian View-based Interpretation for Chain-of-Thought Reasoning [48.51969964676017]
CoT(Chain-of-Thought)は、大規模言語モデルの推論性能を高める上で重要な位置を占めている。
本稿では,CoTの精度を制御するためのリード・アンド・コントロル手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T04:07:13Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Mind the instructions: a holistic evaluation of consistency and
interactions in prompt-based learning [14.569770617709073]
本稿では,どの設計選択が課題予測の不安定性や矛盾の原因となるかを詳細に分析する。
本稿では,入力分布とラベルの相関関係が,誘導モデルにのみ小さな問題となることを示す。
統計的に分析し、どの要因が最も影響力があり、インタラクティブで、安定したかを示す。
論文 参考訳(メタデータ) (2023-10-20T13:25:24Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Measuring Faithfulness in Chain-of-Thought Reasoning [19.074147845029355]
大きな言語モデル(LLM)は、質問に答える前にステップバイステップの"Chain-of-Thought"(CoT)推論を生成する場合、より優れたパフォーマンスを発揮する。
記述された推論が、モデルの実際の推論(すなわち、質問に答えるプロセス)の忠実な説明であるかどうかは不明である。
我々は,CoTに介入する際のモデル予測がどう変化するかを調べることで,CoT推論が不信である可能性の仮説を考察する。
論文 参考訳(メタデータ) (2023-07-17T01:08:39Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
大規模言語モデル(LLM)は、その振る舞いの正しさと安全性を検証するのが困難である。
一つのアプローチは、LLMが質問に答えるときにステップバイステップの推論を生成することによって、彼らの推論を外部化するように促すことである。
このアプローチは、モデルの実的推論を忠実に反映する記述された推論に依存しており、必ずしもそうではない。
分解に基づく手法は、時にはCoTの手法に近づき、質問応答タスクにおいて高い性能を達成する。
論文 参考訳(メタデータ) (2023-07-17T00:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。