論文の概要: Model-Based Counterfactual Synthesizer for Interpretation
- arxiv url: http://arxiv.org/abs/2106.08971v1
- Date: Wed, 16 Jun 2021 17:09:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 19:25:16.343648
- Title: Model-Based Counterfactual Synthesizer for Interpretation
- Title(参考訳): モデルに基づく解釈用反事実合成器
- Authors: Fan Yang, Sahan Suresh Alva, Jiahao Chen, Xia Hu
- Abstract要約: 機械学習モデルを解釈するためのモデルベース対実合成器(MCS)フレームワークを提案する。
まずモデルに基づく逆ファクト過程を分析し、条件付き生成逆数ネット(CGAN)を用いてベースシンセサイザーを構築する。
それらの希少なクエリに対する反ファクト宇宙をよりよく近似するために,MCSフレームワークのトレーニングを行うために,傘サンプリング手法を新たに採用した。
- 参考スコア(独自算出の注目度): 40.01787107375103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactuals, serving as one of the emerging type of model
interpretations, have recently received attention from both researchers and
practitioners. Counterfactual explanations formalize the exploration of
``what-if'' scenarios, and are an instance of example-based reasoning using a
set of hypothetical data samples. Counterfactuals essentially show how the
model decision alters with input perturbations. Existing methods for generating
counterfactuals are mainly algorithm-based, which are time-inefficient and
assume the same counterfactual universe for different queries. To address these
limitations, we propose a Model-based Counterfactual Synthesizer (MCS)
framework for interpreting machine learning models. We first analyze the
model-based counterfactual process and construct a base synthesizer using a
conditional generative adversarial net (CGAN). To better approximate the
counterfactual universe for those rare queries, we novelly employ the umbrella
sampling technique to conduct the MCS framework training. Besides, we also
enhance the MCS framework by incorporating the causal dependence among
attributes with model inductive bias, and validate its design correctness from
the causality identification perspective. Experimental results on several
datasets demonstrate the effectiveness as well as efficiency of our proposed
MCS framework, and verify the advantages compared with other alternatives.
- Abstract(参考訳): 新たなタイプのモデル解釈の1つとして機能する反事実は、最近研究者と実践者の両方から注目を集めている。
反事実的説明は `what-if'' シナリオの探索を形式化し、仮説データサンプルのセットを用いた例ベースの推論の例である。
本質的には、モデル決定が入力摂動とどのように変化するかを示す。
既存の反事実生成法は主にアルゴリズムに基づいており、時間非効率であり、異なるクエリに対して同じ反事実宇宙を仮定する。
そこで本研究では,機械学習モデル解釈のためのモデルベース反事実合成(mcs)フレームワークを提案する。
まず,モデルに基づく逆ファクト過程を分析し,条件付き生成逆数ネット(CGAN)を用いてベースシンセサイザーを構築する。
それらの希少なクエリに対する反ファクト宇宙をよりよく近似するために,MCSフレームワークのトレーニングを行うために,傘サンプリング手法を新たに採用した。
さらに,モデル帰納バイアスを伴う属性間の因果依存性を取り入れ,因果性識別の観点から設計の正確性を検証することで,mcsフレームワークを強化した。
いくつかのデータセットに対する実験結果から,提案したMCSフレームワークの有効性と効率性を実証し,他の選択肢と比較して利点を検証した。
関連論文リスト
- Lexicographic optimization-based approaches to learning a representative model for multi-criteria sorting with non-monotonic criteria [5.374419989598479]
本稿では,MCS問題の代表モデルを非単調な基準で学習するためのいくつかのアプローチを提案する。
まず、いくつかの変換関数を定義して、限界値と圏閾値を UTA のような関数空間にマッピングする。
そこで我々は,MCS問題における非単調な基準をモデル化するための制約セットを構築し,意思決定者の代入事例選好情報の整合性を確認する最適化モデルを構築した。
論文 参考訳(メタデータ) (2024-09-03T05:29:05Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
この研究は、変数推論を用いて、意見力学 ABM のパラメータを推定する。
我々は推論プロセスを自動微分に適した最適化問題に変換する。
提案手法は, シミュレーションベース法とMCMC法より, マクロ的(有界信頼区間とバックファイア閾値)と微視的(200ドル, エージェントレベルの役割)の両方を正確に推定する。
論文 参考訳(メタデータ) (2024-03-08T14:45:18Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
因果推論は科学の重要な目標であり、研究者は観測データを使って意味のある結論に達することができる。
経路モデル、構造方程式モデル(SEM)および指向非巡回グラフ(DAG)は、現象の根底にある因果構造に関する仮定を明確に特定する手段を提供する。
本稿では,機械学習のスーパーラーナーアンサンブルを統合したパスモデリング手法であるSuper Learner Equation Modelingを提案する。
論文 参考訳(メタデータ) (2023-08-08T16:04:42Z) - How to Estimate Model Transferability of Pre-Trained Speech Models? [84.11085139766108]
事前学習音声モデルの伝達可能性推定のためのスコアベースアセスメントフレームワーク
ベイズ確率推定と最適輸送という2つの表現理論を利用して、PSM候補のランクスコアを生成する。
本フレームワークは,候補モデルやレイヤを実際に微調整することなく,転送可能性スコアを効率的に計算する。
論文 参考訳(メタデータ) (2023-06-01T04:52:26Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。