論文の概要: Learning to Retrieve and Reason on Knowledge Graph through Active Self-Reflection
- arxiv url: http://arxiv.org/abs/2502.14932v1
- Date: Thu, 20 Feb 2025 06:38:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:00.134696
- Title: Learning to Retrieve and Reason on Knowledge Graph through Active Self-Reflection
- Title(参考訳): 能動自己回帰による知識グラフの検索と推論の学習
- Authors: Han Zhang, Langshi Zhou, Hanfang Yang,
- Abstract要約: 本稿では,知識グラフ推論ARGのための能動的自己回帰フレームワークを提案する。
フレームワーク内では、特別なトークンを利用して、知識検索が必要かどうかをテキスト的に決定する。
モデルによって生成された推論経路は高い解釈可能性を示し、モデルの構造的知識に対する理解をより深く探求することができる。
- 参考スコア(独自算出の注目度): 5.164923314261229
- License:
- Abstract: Extensive research has investigated the integration of large language models (LLMs) with knowledge graphs to enhance the reasoning process. However, understanding how models perform reasoning utilizing structured graph knowledge remains underexplored. Most existing approaches rely on LLMs or retrievers to make binary judgments regarding the utilization of knowledge, which is too coarse. Meanwhile, there is still a lack of feedback mechanisms for reflection and correction throughout the entire reasoning path. This paper proposes an Active self-Reflection framework for knowledge Graph reasoning ARG, introducing for the first time an end-to-end training approach to achieve iterative reasoning grounded on structured graphs. Within the framework, the model leverages special tokens to \textit{actively} determine whether knowledge retrieval is necessary, performs \textit{reflective} critique based on the retrieved knowledge, and iteratively reasons over the knowledge graph. The reasoning paths generated by the model exhibit high interpretability, enabling deeper exploration of the model's understanding of structured knowledge. Ultimately, the proposed model achieves outstanding results compared to existing baselines in knowledge graph reasoning tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)と知識グラフを統合することにより,推論プロセスの強化が図られている。
しかし、構造化グラフ知識を用いてモデルがどのように推論を行うかを理解することは、まだ未定である。
既存のアプローチのほとんどはLLMやレトリバーに頼り、知識の利用に関して二項判定を行う。
一方、推論パス全体を通して、リフレクションと修正のためのフィードバックメカニズムがまだ欠如しています。
本稿では,構造化グラフに基づく反復的推論を実現するために,エンドツーエンドの学習手法を初めて導入した知識グラフ推論ARGのための能動的自己回帰フレームワークを提案する。
フレームワーク内では、特別なトークンを利用して知識検索が必要なかどうかを判断し、取得した知識と知識グラフに対する反復的理由に基づいて、‘textit{reflective} 批判を行う。
モデルによって生成された推論経路は高い解釈可能性を示し、モデルの構造的知識に対する理解をより深く探求することができる。
最終的に、提案モデルは知識グラフ推論タスクの既存のベースラインと比較して優れた結果が得られる。
関連論文リスト
- In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR [0.0]
グラフ推論とシンボリック抽象化を組み合わせてドメイン知識を動的に拡張するフレームワークであるGraph-PReFLexORを提案する。
強化学習に触発されて、推論は構造化されたマッピングとして定義され、タスクが知識グラフ、抽象パターン、そして最終的には最終回答を生み出す。
その結果、より優れた推論深度と適応性を示し、透明で多分野のAI駆動型発見の可能性を示している。
論文 参考訳(メタデータ) (2025-01-14T13:52:41Z) - KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
本稿では、textitKnowledge-aligned Language Modeling アプローチである textbfKaLM を提案する。
明示的な知識アライメントと暗黙的な知識アライメントという共同目的を通じて、KG知識と整合するように、自己回帰的な大規模言語モデルを微調整する。
特に,本手法は知識駆動型タスクの評価において顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2024-12-06T11:08:24Z) - Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQAは知識グラフに格納された構造化情報を活用することで自然言語の質問に答える。
本稿では,Q-KGR(Q-Guided Knowledge Graph Re-scoring method)を提案する。
また,大規模言語モデルに再認識された知識グラフを注入するパラメータ効率の高い手法であるKnowformerを導入し,事実推論を行う能力を高める。
論文 参考訳(メタデータ) (2024-10-02T10:27:07Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK)は知識推論のための包括的なフレームワークである。
CoKにはデータセット構築とモデル学習の両方のための方法論が含まれている。
KnowReasonで広範な実験を行う。
論文 参考訳(メタデータ) (2024-06-30T10:49:32Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
本稿では,G-SAP という名称のコモンセンス推論のためのグラフベース構造認識プロンプト学習モデルを提案する。
特にエビデンスグラフは、ConceptNet、Wikipedia、Cambridge Dictionaryといった複数の知識ソースを統合することで構築される。
その結果、既存のモデル、特にOpenbookQAデータセット上のSoTA LM+GNNsモデルよりも6.12%改善された。
論文 参考訳(メタデータ) (2024-05-09T08:28:12Z) - EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs [41.928535719157054]
本研究では,事象中心の知識グラフに自由文を接地する問題に対処するため,EventGroundと呼ばれる初期包括的フレームワークを提案する。
これらの問題に対処するために、単純で効果的な解析と部分的な情報抽出方法を提案する。
基礎知識を取り入れた我々の枠組みは、解釈可能な証拠を提供しながら最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-30T01:16:37Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
本稿では,複数の手がかりに対する共通点と矛盾点の推測を目的とした知識グラフの比較推論を提案する。
我々は,大規模な知識グラフに対して比較推論機能を提供する,最初のプロトタイプシステムであるKompaReを開発した。
論文 参考訳(メタデータ) (2020-11-06T04:57:37Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。