論文の概要: Graph in the Vault: Protecting Edge GNN Inference with Trusted Execution Environment
- arxiv url: http://arxiv.org/abs/2502.15012v1
- Date: Thu, 20 Feb 2025 20:09:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:04.437245
- Title: Graph in the Vault: Protecting Edge GNN Inference with Trusted Execution Environment
- Title(参考訳): Vaultのグラフ:信頼された実行環境下でエッジGNN推論を保護する
- Authors: Ruyi Ding, Tianhong Xu, Aidong Adam Ding, Yunsi Fei,
- Abstract要約: エッジデバイスへの機械学習モデルの広範な展開は、モデル知的財産権(IP)とデータプライバシを脆弱なものにしている。
我々は,Trusted Execution Environment(TEE)に基づく最初のセキュアグラフニューラルネットワーク(GNN)デプロイメント戦略であるGNNVaultを提案する。
GNNVaultは、信頼できない劣化精度で、最先端のリンク盗難攻撃に対するGNN推論を保護している。
- 参考スコア(独自算出の注目度): 2.9123921488295768
- License:
- Abstract: Wide deployment of machine learning models on edge devices has rendered the model intellectual property (IP) and data privacy vulnerable. We propose GNNVault, the first secure Graph Neural Network (GNN) deployment strategy based on Trusted Execution Environment (TEE). GNNVault follows the design of 'partition-before-training' and includes a private GNN rectifier to complement with a public backbone model. This way, both critical GNN model parameters and the private graph used during inference are protected within secure TEE compartments. Real-world implementations with Intel SGX demonstrate that GNNVault safeguards GNN inference against state-of-the-art link stealing attacks with negligible accuracy degradation (<2%).
- Abstract(参考訳): エッジデバイスへの機械学習モデルの広範な展開は、モデル知的財産権(IP)とデータプライバシを脆弱なものにしている。
我々は,Trusted Execution Environment(TEE)に基づく,最初のセキュアグラフニューラルネットワーク(GNN)デプロイメント戦略であるGNNVaultを提案する。
GNNVault は 'partition-before-training' の設計に従っており、パブリックバックボーンモデルを補完するプライベート GNN 整流器を含んでいる。
このようにして、重要なGNNモデルパラメータと推論で使用されるプライベートグラフは、セキュアなTEEコンパートメント内で保護される。
Intel SGXによる実世界の実装では、GNNVaultは、信頼できない精度の低下(2%)を伴う最先端リンク盗難攻撃に対して、GNNの推論を保護している。
関連論文リスト
- Statistical Guarantees for Link Prediction using Graph Neural Networks [7.86824225673149]
本稿では,線形GNNアーキテクチャ(LG-GNN)を提案する。
平均二乗誤差の上限を確立し,LG-GNNの高確率エッジ検出能力を保証する。
論文 参考訳(メタデータ) (2024-02-05T03:03:00Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
グラフニューラルネットワーク(GNN)は,グラフベースのタスクにおいて,目立ったグラフ学習モデルとして登場した。
悪意のある攻撃者は、入力グラフデータに摂動を追加することで、予測の公平度を容易に損なうことができる。
本稿では, ELEGANT というフレームワークを提案し, GNN の公正度レベルにおける認証防御の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-11-05T20:29:40Z) - GNNBleed: Inference Attacks to Unveil Private Edges in Graphs with
Realistic Access to GNN Models [3.0509197593879844]
本稿では,敵がブラックボックスGNNモデルアクセスを持つ状況におけるエッジプライバシについて検討する。
我々は,GNNのメッセージパッシング機構に基づく一連のプライバシ攻撃を導入する。
論文 参考訳(メタデータ) (2023-11-03T20:26:03Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience [50.460555688927826]
グラフニューラルネットワーク(GNN)の脆弱性に対処するグラフエージェントネットワーク(GAgN)を提案する。
GAgNはグラフ構造化エージェントネットワークであり、各ノードは1-hop-viewエージェントとして設計されている。
エージェントの限られたビューは、悪意のあるメッセージがGAgNでグローバルに伝播するのを防ぎ、グローバル最適化ベースのセカンダリアタックに抵抗する。
論文 参考訳(メタデータ) (2023-06-12T07:27:31Z) - ProGAP: Progressive Graph Neural Networks with Differential Privacy
Guarantees [8.79398901328539]
グラフニューラルネットワーク(GNN)は、グラフを学習するための一般的なツールとなっているが、広く使われているため、プライバシの懸念が高まる。
本稿では,ProGAPと呼ばれる新たなGNNを提案し,プログレッシブトレーニング手法を用いて,そのような精度とプライバシのトレードオフを改善する。
論文 参考訳(メタデータ) (2023-04-18T12:08:41Z) - Heterogeneous Randomized Response for Differential Privacy in Graph
Neural Networks [18.4005860362025]
グラフニューラルネットワーク(GNN)は、プライバシ推論攻撃(PIA)の影響を受けやすい
差分プライバシ(DP)保証の下で,ノードの特徴やエッジをPIAに対して保護する機構を提案する。
ノードの特徴とエッジの両レベルで、より優れたランダム化確率とより厳密なエラー境界を導出する。
論文 参考訳(メタデータ) (2022-11-10T18:52:46Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。