Phase space geometry of collective spin systems: Scaling and Fractality
- URL: http://arxiv.org/abs/2502.15169v1
- Date: Fri, 21 Feb 2025 03:11:52 GMT
- Title: Phase space geometry of collective spin systems: Scaling and Fractality
- Authors: Miguel Gonzalez, Miguel A. Bastarrachea-Magnani, Jorge G. Hirsch,
- Abstract summary: We examine the scaling of the inverse participation ratio of spin coherent states in the energy basis of three collective spin systems.<n>For the Quantum Kicked Top, the fractal dimension of coherent states -- when well-defined -- exhibits three general behaviors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine the scaling of the inverse participation ratio of spin coherent states in the energy basis of three collective spin systems: a bounded harmonic oscillator, the Lipkin-Meshkov-Glick model, and the Quantum Kicked Top. The finite-size quantum probing provides detailed insights into the structure of the phase space, particularly the relationship between critical points in classical dynamics and their quantum counterparts in collective spin systems. We introduce a finite-size scaling mass exponent that makes it possible to identify conditions under which a power-law behavior emerges, allowing to assign a fractal dimension to a coherent state. For the Quantum Kicked Top, the fractal dimension of coherent states -- when well-defined -- exhibits three general behaviors: one related to the presence of critical points and two associated with regular and chaotic dynamics. The finite-size scaling analysis paves the way toward exploring collective spin systems relevant to quantum technologies within the quantum-classical framework.
Related papers
- Entanglement scaling and criticality of quantum many-body systems in canonical quantization picture using tensor network [0.0]
This work investigates the quantum entanglement and criticality of the ground-state wave-functions of infinitely-many coupled quantum oscillators (iCQOs)
By extending the imaginary-time evolution algorithm with translationally-invariant functional tensor network, we simulate the ground state of iCQOs with the presence of two- and three-body couplings.
We reveal the logarithmic scaling law of entanglement entropy (EE) and the scaling law of correlation length against the virtual bond $chi$ at the dividing point of physical and non-physical regions.
arXiv Detail & Related papers (2024-10-31T04:20:49Z) - Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Measurement-induced multipartite-entanglement regimes in collective spin
systems [0.0]
We study the competing effects of collective generalized measurements and interaction-induced scrambling in the dynamics of an ensemble of spin-1/2 particles.
We show that the interplay between collective unitary dynamics and measurements leads to three regimes of the average Quantum Fisher Information.
arXiv Detail & Related papers (2023-05-17T13:34:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.