論文の概要: Attention Eclipse: Manipulating Attention to Bypass LLM Safety-Alignment
- arxiv url: http://arxiv.org/abs/2502.15334v1
- Date: Fri, 21 Feb 2025 09:38:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:25.797278
- Title: Attention Eclipse: Manipulating Attention to Bypass LLM Safety-Alignment
- Title(参考訳): 注意 Eclipse: LLMの安全アライメントを回避するための注意を操作する
- Authors: Pedram Zaree, Md Abdullah Al Mamun, Quazi Mishkatul Alam, Yue Dong, Ihsen Alouani, Nael Abu-Ghazaleh,
- Abstract要約: 効果的な防御とモデル安全性の正確な評価を導くために、潜在的なジェイルブレイク攻撃の範囲を予測することが重要である。
提案手法は,プロンプトの異なる部分の注意を選択的に強化あるいは弱めるために,モデルの注意を操作できる,効果的なジェイルブレイク攻撃を生成するための新しいアプローチである。
- 参考スコア(独自算出の注目度): 5.552439217633078
- License:
- Abstract: Recent research has shown that carefully crafted jailbreak inputs can induce large language models to produce harmful outputs, despite safety measures such as alignment. It is important to anticipate the range of potential Jailbreak attacks to guide effective defenses and accurate assessment of model safety. In this paper, we present a new approach for generating highly effective Jailbreak attacks that manipulate the attention of the model to selectively strengthen or weaken attention among different parts of the prompt. By harnessing attention loss, we develop more effective jailbreak attacks, that are also transferrable. The attacks amplify the success rate of existing Jailbreak algorithms including GCG, AutoDAN, and ReNeLLM, while lowering their generation cost (for example, the amplified GCG attack achieves 91.2% ASR, vs. 67.9% for the original attack on Llama2-7B/AdvBench, using less than a third of the generation time).
- Abstract(参考訳): 近年の研究では、アライメントなどの安全対策にもかかわらず、注意深く構築されたジェイルブレイク入力は、大きな言語モデルによって有害なアウトプットを生成できることが示されている。
効果的な防御とモデル安全性の正確な評価を導くために、潜在的なジェイルブレイク攻撃の範囲を予測することが重要である。
本稿では,異なる部分の注意を選択的に強化あるいは弱めるために,モデルの注意を操作できる効果的なジェイルブレイク攻撃を生成するための新しいアプローチを提案する。
注意喪失を生かして、より効果的な脱獄攻撃を発生させる。
この攻撃は、GCG、AutoDAN、ReNeLLMを含む既存のジェイルブレイクアルゴリズムの成功率を増幅し、生成コストを下げる(例えば、増幅されたGCG攻撃は、生成時間の3分の1以下を使用して、Llama2-7B/AdvBenchに対する当初の攻撃の67.9%に対して91.2%のASRを達成した)。
関連論文リスト
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
大規模言語モデル(LLM)におけるジェイルブレークは、LLMを騙して有害なテキストを生成するというセキュリティ上の問題である。
我々は7つの異なるジェイルブレイク法を詳細に分析し、不一致が不十分な観察サンプルから生じることを確認した。
安全境界内でのアクティベーションを適応的に制限する「textbfActivation Boundary Defense (ABD)」という新しい防衛法を提案する。
論文 参考訳(メタデータ) (2024-12-22T14:18:39Z) - JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs [11.924542310342282]
我々は、LLM(Large Language Models)アライメントを調べるための新しいブラックボックスジェイルブレイクフレームワークであるJailPOを紹介する。
スケーラビリティと普遍性のために、JailPOは攻撃モデルを慎重に訓練し、隠蔽されたジェイルブレイクプロンプトを自動的に生成する。
また、優先最適化に基づく攻撃手法を導入し、ジェイルブレイクの有効性を高める。
論文 参考訳(メタデータ) (2024-12-20T07:29:10Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
訓練時安全アライメントにもかかわらず、MLLMは脱獄攻撃に弱いままである。
我々は、安全な報酬モデルを利用してジェイルブレイク攻撃を防御する推論時防衛フレームワークImmuneを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:00:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation [42.797865918373326]
本稿では,トランスフォーマーを用いた大規模言語モデル(LLM)のジェイルブレイク攻撃に対する脆弱性について検討する。
本稿では,ジェイルブレイクを容易にするために,モデルの注意点を操作する拡張手法を提案する。
我々の戦略はまた、目に見えない有害な目標とブラックボックスのLSMの両方に対して堅牢な攻撃伝達性を示す。
論文 参考訳(メタデータ) (2024-10-11T17:55:09Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization [98.18718484152595]
本研究は,学習段階と推論段階の両方において,目標の優先順位付けを統合することで,支援と安全性の確保という目標との本質的な対立に対処することを提案する。
我々の研究は、脱獄攻撃と防衛の理解に寄与し、LLMの能力と安全性の関係に光を当てている。
論文 参考訳(メタデータ) (2023-11-15T16:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。