論文の概要: Programmers Aren't Obsolete Yet: A Syllabus for Teaching CS Students to Responsibly Use Large Language Models for Code Generation
- arxiv url: http://arxiv.org/abs/2502.15493v1
- Date: Fri, 21 Feb 2025 14:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:03.299143
- Title: Programmers Aren't Obsolete Yet: A Syllabus for Teaching CS Students to Responsibly Use Large Language Models for Code Generation
- Title(参考訳): CSの学生にコード生成に責任を持って大規模言語モデルを使うことを教えるSyllabus
- Authors: Bruno Pereira Cipriano, Lúcio Studer Ferreira,
- Abstract要約: 大規模言語モデル(LLM)はコード生成を自動化する強力なツールとして登場し、プログラマの生産性を高める大きな可能性を秘めている。
彼らの非決定論的性質とユーザ入力への依存は、責任と効果的な使用を保証するために、プログラミングの基本をしっかりと理解する必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have emerged as powerful tools for automating code generation, offering immense potential to enhance programmer productivity. However, their non-deterministic nature and reliance on user input necessitate a robust understanding of programming fundamentals to ensure their responsible and effective use. In this paper, we argue that foundational computing skills remain crucial in the age of LLMs. We propose a syllabus focused on equipping computer science students to responsibly embrace LLMs as performance enhancement tools. This work contributes to the discussion on the why, when, and how of integrating LLMs into computing education, aiming to better prepare programmers to leverage these tools without compromising foundational software development principles.
- Abstract(参考訳): 大規模言語モデル(LLM)はコード生成を自動化する強力なツールとして登場し、プログラマの生産性を高める大きな可能性を秘めている。
しかし、その非決定論的性質とユーザ入力への依存は、その責任と効果的な使用を保証するために、プログラミングの基礎をしっかりと理解する必要がある。
本稿では,LLMの時代において基礎計算技術は依然として不可欠である,と論じる。
本稿では,コンピュータサイエンスの学生を対象に,LLMをパフォーマンス向上ツールとして責任を持って採用するシラバスを提案する。
この研究は、なぜ、いつ、どのようにLLMをコンピューティング教育に統合するか、という議論に寄与し、基礎となるソフトウェア開発原則を妥協することなく、プログラマがこれらのツールを活用するためのより良い準備を目指している。
関連論文リスト
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - AI Software Engineer: Programming with Trust [33.88230182444934]
大きな言語モデル(LLM)は、コードスニペットを生成するのに驚くほどの習熟度を示している。
AIソフトウェアエンジニアのデプロイに成功するためには、人間主導のソフトウェアエンジニアリングプラクティスによって確立された信頼と同等以上の信頼レベルが必要である、と私たちは主張する。
論文 参考訳(メタデータ) (2025-02-19T14:28:42Z) - ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [49.04652315815501]
ツール学習は、大規模な言語モデル(LLM)にとって、外部ツールとのインタラクションを通じて、複雑な現実世界のタスクを解決する重要な機能として登場した。
本稿では,ツール学習をコード生成タスクとして再編成する新しいフレームワークであるToolCoderを提案する。
論文 参考訳(メタデータ) (2025-02-17T03:42:28Z) - MaestroMotif: Skill Design from Artificial Intelligence Feedback [67.17724089381056]
MaestroMotifはAI支援スキルデザインの手法であり、高性能で適応可能なエージェントを生成する。
本稿では,AIを活用したスキルデザイン手法であるMaestroMotifについて述べる。
論文 参考訳(メタデータ) (2024-12-11T16:59:31Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - From Language Models to Practical Self-Improving Computer Agents [0.8547032097715571]
我々は、多様なコンピュータタスクを実行し、自己改善できるAIコンピュータエージェントを作成するための方法論を開発する。
我々は、LLMエージェントに検索、インターネット検索、Webナビゲーション、テキストエディタ機能を増強するよう促す。
このエージェントは、これらの様々なツールを効果的に利用して、自動ソフトウェア開発やWebベースのタスクを含む問題を解決する。
論文 参考訳(メタデータ) (2024-04-18T07:50:10Z) - CSEPrompts: A Benchmark of Introductory Computer Science Prompts [11.665831944836118]
AI、機械学習、NLPの最近の進歩は、新しい世代のLarge Language Models(LLM)の開発に繋がった。
商業的応用により、この技術は一般大衆に利用できるようになったため、学術的および専門的な目的のために高品質なテキストを作成するためにLLMを使用することが可能である。
学校や大学は、学生によるAI生成コンテンツの利用の増加に気づいており、この新しい技術とその潜在的な誤用の影響を調査している。
論文 参考訳(メタデータ) (2024-04-03T07:55:57Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z) - Automatically Generating CS Learning Materials with Large Language
Models [4.526618922750769]
大きな言語モデル(LLM)は、ソフトウェア開発者が自然言語のプロンプトに基づいてコードを生成することを可能にする。
LLMは、インストラクターが学習材料をスケールするのを手助けしながら、学生が新しい方法でコードと対話することを可能にする。
LLMはまた、学術的完全性、カリキュラム設計、ソフトウェア工学のキャリアに新しい意味を導入している。
論文 参考訳(メタデータ) (2022-12-09T20:37:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。