論文の概要: Estimating Vehicle Speed on Roadways Using RNNs and Transformers: A Video-based Approach
- arxiv url: http://arxiv.org/abs/2502.15545v1
- Date: Fri, 21 Feb 2025 15:51:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:07.683293
- Title: Estimating Vehicle Speed on Roadways Using RNNs and Transformers: A Video-based Approach
- Title(参考訳): RNNとトランスフォーマーを用いた道路走行速度の推定:ビデオによるアプローチ
- Authors: Sai Krishna Reddy Mareddy, Dhanush Upplapati, Dhanush Kumar Antharam,
- Abstract要約: 本研究は,高度な機械学習モデル,特にLong Short-Term Memory(LSTM),Gated Recurrent Units(GRU),Transformersの,ビデオデータを用いた車両速度推定タスクへの適用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This project explores the application of advanced machine learning models, specifically Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Transformers, to the task of vehicle speed estimation using video data. Traditional methods of speed estimation, such as radar and manual systems, are often constrained by high costs, limited coverage, and potential disruptions. In contrast, leveraging existing surveillance infrastructure and cutting-edge neural network architectures presents a non-intrusive, scalable solution. Our approach utilizes LSTM and GRU to effectively manage long-term dependencies within the temporal sequence of video frames, while Transformers are employed to harness their self-attention mechanisms, enabling the processing of entire sequences in parallel and focusing on the most informative segments of the data. This study demonstrates that both LSTM and GRU outperform basic Recurrent Neural Networks (RNNs) due to their advanced gating mechanisms. Furthermore, increasing the sequence length of input data consistently improves model accuracy, highlighting the importance of contextual information in dynamic environments. Transformers, in particular, show exceptional adaptability and robustness across varied sequence lengths and complexities, making them highly suitable for real-time applications in diverse traffic conditions. The findings suggest that integrating these sophisticated neural network models can significantly enhance the accuracy and reliability of automated speed detection systems, thus promising to revolutionize traffic management and road safety.
- Abstract(参考訳): 本研究は,高度な機械学習モデル,特にLong Short-Term Memory(LSTM),Gated Recurrent Units(GRU),Transformersの,ビデオデータを用いた車両速度推定タスクへの適用について検討する。
レーダーや手動システムのような従来の速度推定法は、しばしば高いコスト、限られた範囲、潜在的な破壊によって制約される。
対照的に、既存の監視インフラストラクチャと最先端のニューラルネットワークアーキテクチャを活用することは、非侵襲的でスケーラブルなソリューションを提供する。
本稿では,LSTMとGRUを用いてビデオフレームの時間的シーケンス内での長期的依存関係を効果的に管理し,トランスフォーマーは自己アテンション機構を活用することにより,シーケンス全体の並列処理を可能にし,データの最も情報性の高いセグメントに焦点をあてる。
本研究では,LSTMとGRUの両者が,高度なゲーティング機構により基礎的リカレントニューラルネットワーク(RNN)より優れていることを示す。
さらに,入力データのシーケンス長の増大によりモデル精度が向上し,動的環境におけるコンテキスト情報の重要性が強調される。
特にトランスフォーマーは、様々なシーケンスの長さと複雑さにまたがる例外的な適応性と堅牢性を示し、様々な交通条件におけるリアルタイムアプリケーションに非常に適している。
その結果、これらの洗練されたニューラルネットワークモデルを統合することで、自動速度検出システムの精度と信頼性が大幅に向上し、交通管理と道路安全に革命をもたらすことが示唆された。
関連論文リスト
- OneTrack-M: A multitask approach to transformer-based MOT models [0.0]
マルチオブジェクト追跡(MOT)はコンピュータビジョンにおいて重要な問題である。
OneTrack-Mは、計算効率と精度のトラッキングを強化するために設計されたトランスフォーマーベースのMOTモデルである。
論文 参考訳(メタデータ) (2025-02-06T20:02:06Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
第6世代(6G)モバイルネットワークは、ハイモビリティ通信をサポートする上で、新たな課題をもたらす。
本稿では,スケーラブルで全線形なエンコーダのみのトランスフォーマーモデルに基づく,革新的なチャネル予測フレームワークLinFormerを提案する。
提案手法は,高い予測精度を維持しつつ,計算複雑性を大幅に低減し,コスト効率のよい基地局(BS)の展開に適している。
論文 参考訳(メタデータ) (2024-10-28T13:04:23Z) - A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation [3.355813093377501]
イベントカメラは従来のデジタルカメラとは異なる動作をし、データを継続的にキャプチャし、時間、位置、光強度を符号化するバイナリスパイクを生成する。
これは、イベントカメラに適した革新的でスパイク対応のアルゴリズムの開発を必要とする。
スパイクカメラデータから深度推定を行うために,純粋にスパイク駆動のスパイク変圧器ネットワークを提案する。
論文 参考訳(メタデータ) (2024-04-26T11:32:53Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
論文 参考訳(メタデータ) (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。