論文の概要: OneTrack-M: A multitask approach to transformer-based MOT models
- arxiv url: http://arxiv.org/abs/2502.04478v1
- Date: Thu, 06 Feb 2025 20:02:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:40.643317
- Title: OneTrack-M: A multitask approach to transformer-based MOT models
- Title(参考訳): OneTrack-M: トランスフォーマーベースのMOTモデルに対するマルチタスクアプローチ
- Authors: Luiz C. S. de Araujo, Carlos M. S. Figueiredo,
- Abstract要約: マルチオブジェクト追跡(MOT)はコンピュータビジョンにおいて重要な問題である。
OneTrack-Mは、計算効率と精度のトラッキングを強化するために設計されたトランスフォーマーベースのMOTモデルである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multi-Object Tracking (MOT) is a critical problem in computer vision, essential for understanding how objects move and interact in videos. This field faces significant challenges such as occlusions and complex environmental dynamics, impacting model accuracy and efficiency. While traditional approaches have relied on Convolutional Neural Networks (CNNs), introducing transformers has brought substantial advancements. This work introduces OneTrack-M, a transformer-based MOT model designed to enhance tracking computational efficiency and accuracy. Our approach simplifies the typical transformer-based architecture by eliminating the need for a decoder model for object detection and tracking. Instead, the encoder alone serves as the backbone for temporal data interpretation, significantly reducing processing time and increasing inference speed. Additionally, we employ innovative data pre-processing and multitask training techniques to address occlusion and diverse objective challenges within a single set of weights. Experimental results demonstrate that OneTrack-M achieves at least 25% faster inference times compared to state-of-the-art models in the literature while maintaining or improving tracking accuracy metrics. These improvements highlight the potential of the proposed solution for real-time applications such as autonomous vehicles, surveillance systems, and robotics, where rapid responses are crucial for system effectiveness.
- Abstract(参考訳): マルチオブジェクト追跡(MOT)はコンピュータビジョンにおいて重要な問題であり、オブジェクトの動画での移動や相互作用を理解するのに不可欠である。
この分野は、閉塞や複雑な環境力学といった重要な課題に直面し、モデルの精度と効率に影響を与える。
従来のアプローチは畳み込みニューラルネットワーク(CNN)に依存していたが、トランスフォーマーの導入は大きな進歩をもたらした。
この研究は、計算効率と精度のトラッキングを改善するために、トランスフォーマーベースのMOTモデルであるOneTrack-Mを導入する。
提案手法は,オブジェクト検出と追跡のためのデコーダモデルの必要性を排除し,典型的なトランスフォーマーアーキテクチャを単純化する。
代わりに、エンコーダは時間的データ解釈のバックボーンとして機能し、処理時間を大幅に短縮し、推論速度を向上する。
さらに,一組の重みの中で,包摂的かつ多様な客観的課題に対処するために,革新的なデータ前処理とマルチタスクトレーニング技術を採用している。
実験結果から,OneTrack-Mは文献の最先端モデルと比較して少なくとも25%高速な推測時間を実現し,追跡精度の指標の維持・改善を図っている。
これらの改善は、自動運転車、監視システム、ロボット工学などのリアルタイムアプリケーションのための提案されたソリューションの可能性を強調している。
関連論文リスト
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT)は、自律運転やロボットセンシングのようなインテリジェントなシステムに不可欠である。
本稿では,学習可能なカルマンフィルタを移動モジュールに導入するGRUベースのMOT法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
論文 参考訳(メタデータ) (2024-11-13T08:34:07Z) - LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
第6世代(6G)モバイルネットワークは、ハイモビリティ通信をサポートする上で、新たな課題をもたらす。
本稿では,スケーラブルで全線形なエンコーダのみのトランスフォーマーモデルに基づく,革新的なチャネル予測フレームワークLinFormerを提案する。
提案手法は,高い予測精度を維持しつつ,計算複雑性を大幅に低減し,コスト効率のよい基地局(BS)の展開に適している。
論文 参考訳(メタデータ) (2024-10-28T13:04:23Z) - Optimizing Vision Transformers with Data-Free Knowledge Transfer [8.323741354066474]
視覚変換器(ViT)は、長距離依存を捕捉する能力に優れており、様々なコンピュータビジョンタスクに優れていた。
本稿では,KD(Knowledge Distillation)を用いた大規模ViTモデルの圧縮を提案する。
論文 参考訳(メタデータ) (2024-08-12T07:03:35Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
本研究は,効率的な特徴集約のための複雑局所的注意機構を導入することで,自己注意機構の二次的複雑さに取り組む。
また,各チャネルの注目重量分布を適応的に調整するパラメータフリーチャネル温度適応機構を導入する。
我々は,PointMTが性能と精度の最適なバランスを維持しつつ,最先端手法に匹敵する性能を実現することを示す。
論文 参考訳(メタデータ) (2024-08-10T10:16:03Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
映像内の物体間の空間的・時間的相互作用を効率的にモデル化するソリューションであるTransMOTを提案する。
TransMOTは従来のTransformerよりも計算効率が高いだけでなく、トラッキング精度も向上している。
提案手法は、MOT15、MOT16、MOT17、MOT20を含む複数のベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-04-01T01:49:05Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
オブジェクトの動きと親和性モデルを単一のネットワークに統一する新しいMOTフレームワークUMAを提案する。
UMAは、単一物体追跡とメートル法学習をマルチタスク学習により統合された三重項ネットワークに統合する。
我々は,タスク認識機能学習を促進するために,タスク固有のアテンションモジュールを装備する。
論文 参考訳(メタデータ) (2020-03-25T09:36:43Z) - AP-MTL: Attention Pruned Multi-task Learning Model for Real-time
Instrument Detection and Segmentation in Robot-assisted Surgery [23.33984309289549]
高解像度画像の検出とセグメンテーションのためのリアルタイムロボットシステムの訓練は、限られた計算資源で難しい問題となる。
重み付きエンコーダとタスク認識検出とセグメンテーションデコーダを備えた,エンドツーエンドのトレーニング可能なリアルタイムマルチタスク学習モデルを開発した。
我々のモデルは最先端のセグメンテーションモデルや検出モデルよりも優れており、最も優れたモデルもその課題である。
論文 参考訳(メタデータ) (2020-03-10T14:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。