論文の概要: A Defensive Framework Against Adversarial Attacks on Machine Learning-Based Network Intrusion Detection Systems
- arxiv url: http://arxiv.org/abs/2502.15561v1
- Date: Fri, 21 Feb 2025 16:22:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:01.614717
- Title: A Defensive Framework Against Adversarial Attacks on Machine Learning-Based Network Intrusion Detection Systems
- Title(参考訳): 機械学習によるネットワーク侵入検知システムにおける敵攻撃に対する防御的枠組み
- Authors: Benyamin Tafreshian, Shengzhi Zhang,
- Abstract要約: 従来のシグネチャベースのネットワーク侵入検知システム(NIDS)はゼロデイ攻撃に対して不十分である。
従来のシグネチャベースのNIDSは、バイパス検出のためにネットワークトラフィックを微妙に操作する敵の回避攻撃に対して脆弱である。
本稿では,ML ベースの NIDS の堅牢性を高める新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.155715652244226
- License:
- Abstract: As cyberattacks become increasingly sophisticated, advanced Network Intrusion Detection Systems (NIDS) are critical for modern network security. Traditional signature-based NIDS are inadequate against zero-day and evolving attacks. In response, machine learning (ML)-based NIDS have emerged as promising solutions; however, they are vulnerable to adversarial evasion attacks that subtly manipulate network traffic to bypass detection. To address this vulnerability, we propose a novel defensive framework that enhances the robustness of ML-based NIDS by simultaneously integrating adversarial training, dataset balancing techniques, advanced feature engineering, ensemble learning, and extensive model fine-tuning. We validate our framework using the NSL-KDD and UNSW-NB15 datasets. Experimental results show, on average, a 35% increase in detection accuracy and a 12.5% reduction in false positives compared to baseline models, particularly under adversarial conditions. The proposed defense against adversarial attacks significantly advances the practical deployment of robust ML-based NIDS in real-world networks.
- Abstract(参考訳): サイバー攻撃がますます高度化するにつれて、ネットワーク侵入検知システム(NIDS)は現代のネットワークセキュリティにとって重要な存在である。
従来のシグネチャベースのNIDSはゼロデイアタックや進化中のアタックに対して不十分である。
これに対し、機械学習(ML)ベースのNIDSは有望なソリューションとして登場したが、ネットワークトラフィックを微妙に操作してバイパス検出を行う敵の回避攻撃に対して脆弱である。
この脆弱性に対処するために、敵のトレーニング、データセット分散技術、高度な特徴工学、アンサンブル学習、広範囲なモデル微調整を同時に統合することにより、MLベースのNIDSの堅牢性を高める新しい防御フレームワークを提案する。
NSL-KDDとUNSW-NB15データセットを用いて,我々のフレームワークを検証する。
実験の結果、平均して検出精度が35%上昇し、特に逆境条件下では、ベースラインモデルと比較して偽陽性が12.5%減少した。
提案した敵攻撃に対する防御は、実世界のネットワークにおける堅牢なMLベースのNIDSの実践的展開を著しく促進する。
関連論文リスト
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Problem space structural adversarial attacks for Network Intrusion Detection Systems based on Graph Neural Networks [8.629862888374243]
本稿では,ネットワーク侵入検知におけるGNNに適した敵攻撃の最初の形式化を提案する。
我々は、現実のシナリオにおいて、実行可能な構造攻撃を実行するために、攻撃者が考慮すべき問題空間の制約を概説し、モデル化する。
以上の結果から,古典的特徴に基づく攻撃に対するモデルの堅牢性の向上が示唆された。
論文 参考訳(メタデータ) (2024-03-18T14:40:33Z) - Untargeted White-box Adversarial Attack with Heuristic Defence Methods
in Real-time Deep Learning based Network Intrusion Detection System [0.0]
Adversarial Machine Learning (AML)では、悪意のあるアクターが機械学習(ML)とディープラーニング(DL)モデルを騙して、誤った予測を生成する。
AMLは新たな研究領域であり、敵の攻撃の詳細な研究に欠かせないものとなっている。
我々は,FGSM(Fast Gradient Sign Method),JSMA(Jacobian Saliency Map Attack),PGD(Projected Gradient Descent),Cerini & Wagner(C&W)の4つの強力な攻撃手法を実装した。
論文 参考訳(メタデータ) (2023-10-05T06:32:56Z) - Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning [1.6574413179773757]
敵攻撃は、MLモデルを騙して欠陥予測を生成することを目的としている。
敵攻撃はMLベースのNIDSを妥協する。
本実験は, 対人訓練を伴わない継続的再訓練は, 対人攻撃の有効性を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-08T18:32:08Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Enhancing Robustness Against Adversarial Examples in Network Intrusion
Detection Systems [1.7386735294534732]
RePOは、異なるタイプのネットワーク攻撃を偽の警告設定で検出できるオートエンコーダを識別する助けを借りて、NIDSを構築するための新しいメカニズムである。
評価の結果,悪質なトラフィックの検出は,通常設定では最大29%,対向設定では最大45%改善できることがわかった。
論文 参考訳(メタデータ) (2020-08-09T07:04:06Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Evaluating and Improving Adversarial Robustness of Machine
Learning-Based Network Intrusion Detectors [21.86766733460335]
本研究では,ML ベースの NIDS のロバスト性を評価するため,グレー/ブラックボックスのトラフィック空間攻撃に関する最初の系統的研究を行った。
私たちの仕事は、以下の点で以前のものより優れています。
また,システムロバスト性を改善するために,敵攻撃に対する防御策を提案する。
論文 参考訳(メタデータ) (2020-05-15T13:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。