論文の概要: Chats-Grid: An Iterative Retrieval Q&A Optimization Scheme Leveraging Large Model and Retrieval Enhancement Generation in smart grid
- arxiv url: http://arxiv.org/abs/2502.15583v1
- Date: Fri, 21 Feb 2025 16:47:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:09:46.195000
- Title: Chats-Grid: An Iterative Retrieval Q&A Optimization Scheme Leveraging Large Model and Retrieval Enhancement Generation in smart grid
- Title(参考訳): Chats-Grid: スマートグリッドにおける大規模モデルと検索強化生成を活用する反復型検索Q&A最適化スキーム
- Authors: Yunfeng Li, Jiqun Zhang, Guofu Liao, Xue Shi, Junhong Liu,
- Abstract要約: 本稿では,スマートグリッド環境向けに最適化された,反復検索に基づくQ&AフレームワークChats-Gridを提案する。
検索中,Best Matching 25(BM25)スパース検索とBAAI General Embedding(BGE)高密度検索を組み合わせて,膨大な異種データセットを効果的に処理する。
検索後、微調整された大きな言語モデルでは、関連性を評価し、無関係の結果をフィルタリングし、文脈精度に基づいて文書を並べ替える。
- 参考スコア(独自算出の注目度): 1.8023821453241073
- License:
- Abstract: With rapid advancements in artificial intelligence, question-answering (Q&A) systems have become essential in intelligent search engines, virtual assistants, and customer service platforms. However, in dynamic domains like smart grids, conventional retrieval-augmented generation(RAG) Q&A systems face challenges such as inadequate retrieval quality, irrelevant responses, and inefficiencies in handling large-scale, real-time data streams. This paper proposes an optimized iterative retrieval-based Q&A framework called Chats-Grid tailored for smart grid environments. In the pre-retrieval phase, Chats-Grid advanced query expansion ensures comprehensive coverage of diverse data sources, including sensor readings, meter records, and control system parameters. During retrieval, Best Matching 25(BM25) sparse retrieval and BAAI General Embedding(BGE) dense retrieval in Chats-Grid are combined to process vast, heterogeneous datasets effectively. Post-retrieval, a fine-tuned large language model uses prompt engineering to assess relevance, filter irrelevant results, and reorder documents based on contextual accuracy. The model further generates precise, context-aware answers, adhering to quality criteria and employing a self-checking mechanism for enhanced reliability. Experimental results demonstrate Chats-Grid's superiority over state-of-the-art methods in fidelity, contextual recall, relevance, and accuracy by 2.37%, 2.19%, and 3.58% respectively. This framework advances smart grid management by improving decision-making and user interactions, fostering resilient and adaptive smart grid infrastructures.
- Abstract(参考訳): 人工知能の急速な進歩に伴い、質問応答システム(Q&A)はインテリジェント検索エンジン、仮想アシスタント、カスタマーサービスプラットフォームにおいて欠かせないものとなっている。
しかし、スマートグリッドのような動的ドメインでは、従来の検索強化生成(RAG)Q&Aシステムは、検索品質の不十分、無関係な応答、大規模でリアルタイムなデータストリームの処理における非効率といった課題に直面している。
本稿では,スマートグリッド環境向けに最適化された,反復検索に基づくQ&AフレームワークChats-Gridを提案する。
事前検索フェーズでは、Chats-Gridの高度なクエリ拡張により、センサーの読み取り、メーターレコード、制御システムパラメータなど、さまざまなデータソースの包括的カバレッジが保証される。
検索において,Chats-GridにおけるBest Matching 25(BM25)スパース検索とBAAI General Embedding(BGE)高密度検索を組み合わせ,膨大なヘテロジニアスデータセットを効率的に処理する。
検索後、微調整された大きな言語モデルでは、関連性を評価し、無関係の結果をフィルタリングし、文脈精度に基づいて文書を並べ替える。
このモデルは、品質基準に固執し、信頼性を高めるための自己チェック機構を使用する、正確な文脈対応の回答をさらに生成する。
実験結果から, 忠実度, 文脈的リコール, 関連性, 精度がそれぞれ2.37%, 2.19%, 3.58%であった。
このフレームワークは、意思決定とユーザインタラクションを改善し、レジリエントで適応的なスマートグリッドインフラストラクチャを促進することにより、スマートグリッド管理を向上する。
関連論文リスト
- Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル幻覚を緩和するための強力なアプローチとして登場した。
既存のRAGフレームワークは、しばしば無差別に検索を適用し、非効率な再検索につながる。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:56:20Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - Semantic Tokens in Retrieval Augmented Generation [0.0]
本稿では,確率的RAGシステムと決定論的に検証可能な応答のギャップを埋めるための評価モジュールを導入した新しい比較RAGシステムを提案する。
このフレームワークは、高い精度と検証可能性を必要とする領域において、より信頼性が高くスケーラブルな質問応答アプリケーションを実現する。
論文 参考訳(メタデータ) (2024-12-03T16:52:06Z) - Optimizing Retrieval-Augmented Generation with Elasticsearch for Enhanced Question-Answering Systems [2.4299671488193497]
本研究の目的は,大規模言語モデル(LLM)の精度と品質を,検索型拡張生成(RAG)フレームワークに統合することにより改善することである。
この実験では、テストデータセットとしてSQuAD(Stanford Question Answering dataset)バージョン2.0が使用されている。
論文 参考訳(メタデータ) (2024-10-18T04:17:49Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval [40.17823569905232]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)を大幅に改善し、正確で文脈に根ざした応答を生成する。
RAGアプローチは、クエリコンテキストの関連性のみに基づくトップランクのドキュメントを優先し、冗長性と矛盾する情報をしばしば導入する。
本稿では,RAGにおける文脈選択の最適化を目的とした,教師なしおよびトレーニング不要なフレームワークであるRAG(Mathrices for Augmented Retrieval)によるタスク応答のための選択を提案する。
論文 参考訳(メタデータ) (2024-09-21T03:03:09Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - You Augment Me: Exploring ChatGPT-based Data Augmentation for Semantic Code Search [47.54163552754051]
コード検索はソフトウェア開発において重要な役割を担い、開発者は自然言語クエリを使ってコードを検索し再利用することができる。
近年,大規模言語モデル (LLM) は自然言語の理解と生成において顕著な進歩を遂げている。
本稿では,大規模言語モデルによって生成された高品質で多様な拡張データを利用する新しいアプローチChatDANCEを提案する。
論文 参考訳(メタデータ) (2024-08-10T12:51:21Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
エンティティベース関連モデル(EBRM)と呼ばれる新しいモデルを提案する。
この分解により、高精度にクロスエンコーダQE関連モジュールを使用できる。
また、ユーザログから自動生成されたQEデータによるQEモジュールの事前トレーニングにより、全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-07-01T15:44:53Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。