Physics-consistent machine learning: output projection onto physical manifolds
- URL: http://arxiv.org/abs/2502.15755v2
- Date: Thu, 06 Mar 2025 21:52:47 GMT
- Title: Physics-consistent machine learning: output projection onto physical manifolds
- Authors: Matilde Valente, Tiago C. Dias, Vasco Guerra, Rodrigo Ventura,
- Abstract summary: Data-driven machine learning models often require extensive datasets, which can be costly or inaccessible.<n>We propose a novel physics-consistent machine learning method that directly enforces compliance with physical principles.<n>Our method is demonstrated on two systems: a spring-mass system and a low-temperature reactive plasma.
- Score: 2.06242362470764
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven machine learning models often require extensive datasets, which can be costly or inaccessible, and their predictions may fail to comply with established physical laws. Current approaches for incorporating physical priors mitigate these issues by penalizing deviations from known physical laws, as in physics-informed neural networks, or by designing architectures that automatically satisfy specific invariants. However, penalization approaches do not guarantee compliance with physical constraints for unseen inputs, and invariant-based methods lack flexibility and generality. We propose a novel physics-consistent machine learning method that directly enforces compliance with physical principles by projecting model outputs onto the manifold defined by these laws. This procedure ensures that predictions inherently adhere to the chosen physical constraints, improving reliability and interpretability. Our method is demonstrated on two systems: a spring-mass system and a low-temperature reactive plasma. Compared to purely data-driven models, our approach significantly reduces errors in physical law compliance, enhances predictive accuracy of physical quantities, and outperforms alternatives when working with simpler models or limited datasets. The proposed projection-based technique is versatile and can function independently or in conjunction with existing physics-informed neural networks, offering a powerful, general, and scalable solution for developing fast and reliable surrogate models of complex physical systems, particularly in resource-constrained scenarios.
Related papers
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
This paper introduces a novel, data-driven framework that synergizes physics-based priors with advanced machine learning techniques.
Our framework showcases four algorithms, each embedding a specific physics-based prior tailored to a particular class of nonlinear systems.
The integration of these priors also enhances the expressive power of neural networks, enabling them to capture complex patterns typical in physical phenomena.
arXiv Detail & Related papers (2024-06-20T23:10:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Extreme sparsification of physics-augmented neural networks for
interpretable model discovery in mechanics [0.0]
We propose to train regularized physics-augmented neural network-based models utilizing a smoothed version of $L0$-regularization.
We show that the method can reliably obtain interpretable and trustworthy models for compressible and incompressible thermodynamicity, yield functions, and hardening models for elastoplasticity.
arXiv Detail & Related papers (2023-10-05T16:28:58Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
We propose a physics-guided hybrid approach for modeling non-autonomous systems under control.
This is extended by a recurrent neural network and trained using a sophisticated multi-objective strategy.
Experiments conducted on real data reveal substantial accuracy improvements by our approach compared to a physics-based model.
arXiv Detail & Related papers (2022-04-27T14:33:02Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Augmenting Physical Models with Deep Networks for Complex Dynamics
Forecasting [34.61959169976758]
APHYNITY is a principled approach for augmenting incomplete physical dynamics described by differential equations with deep data-driven models.
It consists in decomposing the dynamics into two components: a physical component accounting for the dynamics for which we have some prior knowledge, and a data-driven component accounting for errors of the physical model.
arXiv Detail & Related papers (2020-10-09T09:31:03Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.