Rashomon perspective for measuring uncertainty in the survival predictive maintenance models
- URL: http://arxiv.org/abs/2502.15772v1
- Date: Sun, 16 Feb 2025 13:36:56 GMT
- Title: Rashomon perspective for measuring uncertainty in the survival predictive maintenance models
- Authors: Yigitcan Yardimci, Mustafa Cavus,
- Abstract summary: The prediction of the Remaining Useful Life of aircraft engines is a critical area in high-reliability sectors such as aerospace and defense.<n>Traditional regression models struggle with censored data, which can lead to biased predictions.<n>Survival models, on the other hand, effectively handle censored data, improving predictive accuracy in maintenance processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prediction of the Remaining Useful Life of aircraft engines is a critical area in high-reliability sectors such as aerospace and defense. Early failure predictions help ensure operational continuity, reduce maintenance costs, and prevent unexpected failures. Traditional regression models struggle with censored data, which can lead to biased predictions. Survival models, on the other hand, effectively handle censored data, improving predictive accuracy in maintenance processes. This paper introduces a novel approach based on the Rashomon perspective, which considers multiple models that achieve similar performance rather than relying on a single best model. This enables uncertainty quantification in survival probability predictions and enhances decision-making in predictive maintenance. The Rashomon survival curve was introduced to represent the range of survival probability estimates, providing insights into model agreement and uncertainty over time. The results on the CMAPSS dataset demonstrate that relying solely on a single model for RUL estimation may increase risk in some scenarios. The censoring levels significantly impact prediction uncertainty, with longer censoring times leading to greater variability in survival probabilities. These findings underscore the importance of incorporating model multiplicity in predictive maintenance frameworks to achieve more reliable and robust failure predictions. This paper contributes to uncertainty quantification in RUL prediction and highlights the Rashomon perspective as a powerful tool for predictive modeling.
Related papers
- Predictive Multiplicity in Survival Models: A Method for Quantifying Model Uncertainty in Predictive Maintenance Applications [0.0]
We frame predictive multiplicity as a critical concern in survival-based models.
We introduce formal measures -- ambiguity, discrepancy, and obscurity -- to quantify it.
This is particularly relevant for downstream tasks such as maintenance scheduling.
arXiv Detail & Related papers (2025-04-16T15:04:00Z) - Evidential time-to-event prediction with calibrated uncertainty quantification [12.446406577462069]
Time-to-event analysis provides insights into clinical prognosis and treatment recommendations.<n>We propose an evidential regression model specifically designed for time-to-event prediction.<n>We show that our model delivers both accurate and reliable performance, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2024-11-12T15:06:04Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
We propose a method to compute prediction intervals for model performance.
We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines.
arXiv Detail & Related papers (2020-12-15T21:32:03Z) - Uncertainty Estimation in Cancer Survival Prediction [8.827764645115955]
Survival models are used in various fields, such as the development of cancer treatment protocols.
We propose a Bayesian framework for survival models that not only gives more accurate survival predictions but also quantifies the survival uncertainty better.
Our approach is a novel combination of variational inference for uncertainty estimation, neural multi-task logistic regression for estimating nonlinear and time-varying risk models, and an additional sparsity-inducing prior to work with high dimensional data.
arXiv Detail & Related papers (2020-03-19T05:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.