論文の概要: Zero-Shot Commonsense Validation and Reasoning with Large Language Models: An Evaluation on SemEval-2020 Task 4 Dataset
- arxiv url: http://arxiv.org/abs/2502.15810v1
- Date: Wed, 19 Feb 2025 12:40:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:41.557542
- Title: Zero-Shot Commonsense Validation and Reasoning with Large Language Models: An Evaluation on SemEval-2020 Task 4 Dataset
- Title(参考訳): Zero-Shot Commonsense Validation and Reasoning with Large Language Models: An Evaluation on SemEval-2020 Task 4 Dataset
- Authors: Rawand Alfugaha, Mohammad AL-Smadi,
- Abstract要約: 本研究では,SemEval-2020 Task 4データセット上でのLarge Language Models(LLM)の性能を評価する。
モデルは、タスクA(Commonsense Validation)とタスクB(Commonsense Explanation)の2つのタスクでテストされる。
結果、LLaMA3-70BはタスクAで98.40%の最高精度を達成し、タスクBで93.40%の旧モデルより遅れていることが明らかとなった。
- 参考スコア(独自算出の注目度): 0.16385815610837165
- License:
- Abstract: This study evaluates the performance of Large Language Models (LLMs) on SemEval-2020 Task 4 dataset, focusing on commonsense validation and explanation. Our methodology involves evaluating multiple LLMs, including LLaMA3-70B, Gemma2-9B, and Mixtral-8x7B, using zero-shot prompting techniques. The models are tested on two tasks: Task A (Commonsense Validation), where models determine whether a statement aligns with commonsense knowledge, and Task B (Commonsense Explanation), where models identify the reasoning behind implausible statements. Performance is assessed based on accuracy, and results are compared to fine-tuned transformer-based models. The results indicate that larger models outperform previous models and perform closely to human evaluation for Task A, with LLaMA3-70B achieving the highest accuracy of 98.40% in Task A whereas, lagging behind previous models with 93.40% in Task B. However, while models effectively identify implausible statements, they face challenges in selecting the most relevant explanation, highlighting limitations in causal and inferential reasoning.
- Abstract(参考訳): 本研究では,SemEval-2020 Task 4データセットにおけるLarge Language Models(LLM)の性能評価を行い,コモンセンスの検証と説明に焦点を当てた。
LLaMA3-70B、Gemma2-9B、Mixtral-8x7Bを含む複数のLCMをゼロショットプロンプト技術を用いて評価する。
モデルは2つのタスクでテストされる: Task A (Commonsense Validation)、モデルがステートメントがコモンセンスの知識と一致するかどうかを決定するTask B (Commonsense Explanation)、モデルが不明瞭なステートメントの背後にある理由を特定するTask B (Commonsense Explanation)。
精度に基づいて評価を行い、その結果を微調整トランスモデルと比較する。
その結果,LLaMA3-70BはタスクAにおいて98.40%の精度を達成しているのに対して,タスクBでは93.40%の精度で先行モデルに遅れる傾向にあることがわかった。
関連論文リスト
- Error-driven Data-efficient Large Multimodal Model Tuning [35.20400815089843]
大規模マルチモーダルモデル (LMM) は、多くの学術ベンチマークで顕著な性能を示している。
本稿では,新しいタスクにジェネリックLMMを効率よく適応することを目的とした,エラー駆動型データ効率チューニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-20T08:07:11Z) - Sign of the Times: Evaluating the use of Large Language Models for Idiomaticity Detection [2.2724928083094196]
本研究は,SemEval 2022 Task 2a, FLUTE, MAGPIEの3つの慣用性データセット上でのLLMの性能について考察する。
これらのモデルが競合する性能を与える一方で、最大のスケールであっても、微調整されたタスク固有モデルの結果と一致しないことがわかった。
論文 参考訳(メタデータ) (2024-05-15T11:55:14Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Common 7B Language Models Already Possess Strong Math Capabilities [61.61442513067561]
本稿では,LLaMA-2 7Bモデルと事前学習を併用したモデルが,すでに強力な数学的能力を示していることを示す。
拡張スケーリングの可能性は、公開されている数学の質問の不足によって制限されている。
論文 参考訳(メタデータ) (2024-03-07T18:00:40Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - ZJUKLAB at SemEval-2021 Task 4: Negative Augmentation with Language
Model for Reading Comprehension of Abstract Meaning [16.151203366447962]
モデル学習に使用されるアルゴリズムとアルゴリズムをチューニングし、最良のモデルを選択するプロセスについて説明する。
ReCAMタスクと言語事前学習の類似性から着想を得て,言語モデルによる否定的拡張という,シンプルで効果的な技術を提案する。
我々のモデルは、それぞれ87.9%の精度と92.8%の精度で、Subtask 1とSubtask 2の2つの公式テストセットで4位に達した。
論文 参考訳(メタデータ) (2021-02-25T13:03:05Z) - When Can Models Learn From Explanations? A Formal Framework for
Understanding the Roles of Explanation Data [84.87772675171412]
個々のデータポイントの説明がモデリング性能を向上させる状況について検討する。
e-SNLI、TACRED、SemEvalの3つの既存のデータセットを使って説明します。
論文 参考訳(メタデータ) (2021-02-03T18:57:08Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explanation
system based on ensemble of language model [2.728575246952532]
本稿では,SemEval-2020 Task 4コンペティションに提出された言語モデルシステムについて述べる。
我々は、事前訓練された言語モデル(BERT、XLNet、RoBERTa、ALBERT)を用いて転送学習を行い、このタスクでそれらを微調整した。
アンサンブルされたモデルはこの問題をよりよく解決し、モデルの精度はサブタスクAで95.9%に達した。
論文 参考訳(メタデータ) (2020-09-06T05:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。