Modality-Aware Neuron Pruning for Unlearning in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2502.15910v1
- Date: Fri, 21 Feb 2025 19:54:46 GMT
- Title: Modality-Aware Neuron Pruning for Unlearning in Multimodal Large Language Models
- Authors: Zheyuan Liu, Guangyao Dou, Xiangchi Yuan, Chunhui Zhang, Zhaoxuan Tan, Meng Jiang,
- Abstract summary: Generative models such as Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) trained on massive datasets can lead them to memorize and inadvertently reveal sensitive information, raising ethical and privacy concerns.<n>We propose Modality Aware Neuron Unlearning (MANU), a novel unlearning framework for MLLMs designed to selectively clip neurons based on their relative importance to the targeted forget data, curated for different modalities.
- Score: 24.30356626130181
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Generative models such as Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) trained on massive datasets can lead them to memorize and inadvertently reveal sensitive information, raising ethical and privacy concerns. While some prior works have explored this issue in the context of LLMs, it presents a unique challenge for MLLMs due to the entangled nature of knowledge across modalities, making comprehensive unlearning more difficult. To address this challenge, we propose Modality Aware Neuron Unlearning (MANU), a novel unlearning framework for MLLMs designed to selectively clip neurons based on their relative importance to the targeted forget data, curated for different modalities. Specifically, MANU consists of two stages: important neuron selection and selective pruning. The first stage identifies and collects the most influential neurons across modalities relative to the targeted forget knowledge, while the second stage is dedicated to pruning those selected neurons. MANU effectively isolates and removes the neurons that contribute most to the forget data within each modality, while preserving the integrity of retained knowledge. Our experiments conducted across various MLLM architectures illustrate that MANU can achieve a more balanced and comprehensive unlearning in each modality without largely affecting the overall model utility.
Related papers
- Resolving Domain Shift For Representations Of Speech In Non-Invasive Brain Recordings [3.5297361401370044]
We focus on non-invasive data collected using magnetoencephalography (MEG)
To the best of our knowledge, this study is the first ever application of feature-level, deep learning based on MEG neuroimaging data.
arXiv Detail & Related papers (2024-10-25T21:56:23Z) - Long Term Memory: The Foundation of AI Self-Evolution [48.52678410533424]
Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning.
Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models.
Unlike large-scale training, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution.
arXiv Detail & Related papers (2024-10-21T06:09:30Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals [21.363722751437066]
We propose NeuroLM, the first multi-task foundation model that leverages the capabilities of Large Language Models (LLMs) by regarding EEG signals as a foreign language.<n>Our approach begins with learning a text-aligned neural tokenizer through vector-quantized temporal-frequency prediction, which encodes EEG signals into discrete neural tokens.<n>We are the first to demonstrate that, by specific incorporation with LLMs, NeuroLM unifies diverse EEG tasks within a single model through instruction tuning.
arXiv Detail & Related papers (2024-08-27T12:07:09Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition [3.4923338594757674]
Large language models (LLMs) can be used to train a model capable of extracting various types of entities.
In this paper, we utilize the open-sourced LLM LLaMA2 as the backbone model, and design specific instructions to distinguish between different types of entities and datasets.
Our model VANER, trained with a small partition of parameters, significantly outperforms previous LLMs-based models and, for the first time, as a model based on LLM, surpasses the majority of conventional state-of-the-art BioNER systems.
arXiv Detail & Related papers (2024-04-27T09:00:39Z) - UMBRAE: Unified Multimodal Brain Decoding [43.6339793925953]
We propose UMBRAE, a unified multimodal decoding of brain signals.
We introduce an efficient universal brain encoder for multimodal-brain alignment.
We also introduce a cross-subject training strategy mapping subject-specific features to a common feature space.
arXiv Detail & Related papers (2024-04-10T17:59:20Z) - Dissecting Language Models: Machine Unlearning via Selective Pruning [0.7373617024876725]
This paper introduces a machine unlearning method specifically designed for Large Language Models (LLMs)
We introduce a selective pruning method for LLMs that removes neurons based on their relative importance on a targeted capability compared to overall network performance.
Our findings reveal that both feed-forward and attention neurons in LLMs are specialized; that is, for specific tasks, certain neurons are more crucial than others.
arXiv Detail & Related papers (2024-03-02T17:10:44Z) - UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models [12.45822383965784]
We introduce UnDIAL (Unlearning via Self-Distillation on Adjusted Logits), a novel and robust unlearning method.
Our approach leverages self-distillation to adjust logits and selectively reduce the influence of targeted tokens.
arXiv Detail & Related papers (2024-02-15T16:21:14Z) - Learning Multimodal Data Augmentation in Feature Space [65.54623807628536]
LeMDA is an easy-to-use method that automatically learns to jointly augment multimodal data in feature space.
We show that LeMDA can profoundly improve the performance of multimodal deep learning architectures.
arXiv Detail & Related papers (2022-12-29T20:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.