論文の概要: Discovery and Deployment of Emergent Robot Swarm Behaviors via Representation Learning and Real2Sim2Real Transfer
- arxiv url: http://arxiv.org/abs/2502.15937v1
- Date: Fri, 21 Feb 2025 21:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:18.732178
- Title: Discovery and Deployment of Emergent Robot Swarm Behaviors via Representation Learning and Real2Sim2Real Transfer
- Title(参考訳): Representation LearningとReal2Sim2Real Transferによる創発的ロボット群行動の発見と展開
- Authors: Connor Mattson, Varun Raveendra, Ricardo Vega, Cameron Nowzari, Daniel S. Drew, Daniel S. Brown,
- Abstract要約: 限られた能力を持つロボットの群れを考えると、我々は起こりうる行動の集合を自動的に発見することを模索する。
本稿では,Real2Sim2Real Behavior Discovery by Self-Supervised Representation Learningを提案する。
- 参考スコア(独自算出の注目度): 8.780553562960677
- License:
- Abstract: Given a swarm of limited-capability robots, we seek to automatically discover the set of possible emergent behaviors. Prior approaches to behavior discovery rely on human feedback or hand-crafted behavior metrics to represent and evolve behaviors and only discover behaviors in simulation, without testing or considering the deployment of these new behaviors on real robot swarms. In this work, we present Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learning, which combines representation learning and novelty search to discover possible emergent behaviors automatically in simulation and enable direct controller transfer to real robots. First, we evaluate our method in simulation and show that our proposed self-supervised representation learning approach outperforms previous hand-crafted metrics by more accurately representing the space of possible emergent behaviors. Then, we address the reality gap by incorporating recent work in sim2real transfer for swarms into our lightweight simulator design, enabling direct robot deployment of all behaviors discovered in simulation on an open-source and low-cost robot platform.
- Abstract(参考訳): 限られた能力を持つロボットの群れを考えると、我々は起こりうる行動の集合を自動的に発見することを模索する。
行動発見への以前のアプローチは、人間のフィードバックや手作りの行動メトリクスに依存しており、実際のロボット群へのこれらの新しい行動のテストや展開を考慮せずに、振る舞いを表現し、進化させ、シミュレーション中の行動のみを発見する。
本稿では,Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learningを紹介し,表現学習とノベルティ探索を組み合わせることで,シミュレーションで起こりうる創発的行動を自動的に発見し,実際のロボットへの直接コントローラ転送を可能にする。
まず,本手法をシミュレーションで評価し,提案手法が従来の手作りの指標よりも優れていることを示す。
そこで我々は,Swarmに対するsim2realトランスファーの最近の取り組みを軽量シミュレータ設計に取り入れ,オープンソースで低コストなロボットプラットフォーム上で,シミュレーションで発見されたすべての動作を直接ロボットに展開させることにより,現実のギャップに対処する。
関連論文リスト
- DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
シミュレーションで学んだ政策を現実世界に伝達することは、ロボットのスキルを大規模に獲得する上で有望な戦略である。
本稿では,Large Language Models (LLMs) を用いてシム・トゥ・リアル設計の自動化と高速化を行う。
本手法では,ヨガボールの上を歩行する四足歩行や四足歩行など,新しいロボットタスクを解くことができる。
論文 参考訳(メタデータ) (2024-06-04T04:53:05Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AIの文献は、HabitatやAI-Thorといったシミュレータで訓練されたエンドツーエンドエージェントに焦点を当てている。
本研究では,sim2realのギャップを最小限に抑えたシミュレーションにおけるエージェントのエンドツーエンドトレーニングについて検討する。
論文 参考訳(メタデータ) (2024-01-25T17:50:05Z) - Teaching Robots to Build Simulations of Themselves [7.886658271375681]
本稿では,簡単な生ビデオデータのみを用いて,ロボットの形状,運動学,運動制御をモデル化し,予測するための自己教師付き学習フレームワークを提案する。
ロボットは自分の動きを観察することで、自分自身をシミュレートし、様々なタスクのために空間的な動きを予測する能力を学ぶ。
論文 参考訳(メタデータ) (2023-11-20T20:03:34Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - Leveraging Human Feedback to Evolve and Discover Novel Emergent
Behaviors in Robot Swarms [14.404339094377319]
我々は、人間の入力を活用して、特定のマルチエージェントシステムから現れる可能性のある集団行動の分類を自動で発見することを目指している。
提案手法は,Swarm集団行動に対する類似性空間を学習することにより,ユーザの嗜好に適応する。
我々は,2つのロボット能力モデルを用いたシミュレーションにおいて,本手法が従来よりも豊かな創発的行動の集合を常に発見できることを検証した。
論文 参考訳(メタデータ) (2023-04-25T15:18:06Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - An in-depth experimental study of sensor usage and visual reasoning of
robots navigating in real environments [20.105395754497202]
実物的エージェントの性能と推論能力について検討し、シミュレーションで訓練し、2つの異なる物理的環境に展開する。
我々は,PointGoalタスクに対して,多種多様なタスクを事前訓練し,対象環境の模擬バージョンを微調整したエージェントが,sim2real転送をモデル化せずに競争性能に達することを示す。
論文 参考訳(メタデータ) (2021-11-29T16:27:29Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
そこで本研究では,学習に基づく知覚とモデルに基づく最適制御を組み合わせることで,人間間をナビゲートする手法を提案する。
私たちのアプローチは、新しいデータ生成ツールであるHumANavによって実現されています。
学習したナビゲーションポリシーは、将来の人間の動きを明示的に予測することなく、人間に予測し、反応できることを実証する。
論文 参考訳(メタデータ) (2020-03-20T16:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。