Multi-Objective Optimization of Water Resource Allocation for Groundwater Recharge and Surface Runoff Management in Watershed Systems
- URL: http://arxiv.org/abs/2502.15953v1
- Date: Fri, 21 Feb 2025 21:34:27 GMT
- Title: Multi-Objective Optimization of Water Resource Allocation for Groundwater Recharge and Surface Runoff Management in Watershed Systems
- Authors: Abbas Sharifi, Hajar Kazemi Naeini, Mohsen Ahmadi, Saeed Asadi, Abbas Varmaghani,
- Abstract summary: Land degradation and air pollution are primarily caused by the salinization of soil and desertification.<n>This study presented an optimization problem to determine the total surface runoff to maintain the level ofUrmia Lake.
- Score: 0.16777183511743468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Land degradation and air pollution are primarily caused by the salinization of soil and desertification that occurs from the drying of salinity lakes and the release of dust into the atmosphere because of their dried bottom. The complete drying up of a lake has caused a community environmental catastrophe. In this study, we presented an optimization problem to determine the total surface runoff to maintain the level of salinity lake (Urmia Lake). The proposed process has two key stages: identifying the influential factors in determining the lake water level using sensitivity analysis approaches based upon historical data and optimizing the effective variable to stabilize the lake water level under changing design variables. Based upon the Sobol'-Jansen and Morris techniques, the groundwater level and total surface runoff flow are highly effective with nonlinear and interacting impacts of the lake water level. As a result of the sensitivity analysis, we found that it may be possible to effectively manage lake levels by adjusting total surface runoff. We used genetic algorithms, non-linear optimization, and pattern search techniques to solve the optimization problem. Furthermore, the lake level constraint is established based on a pattern as a constant number every month. In order to maintain a consistent pattern of lake levels, it is necessary to increase surface runoff by approximately 8.7 times during filling season. It is necessary to increase this quantity by 33.5 times during the draining season. In the future, the results may serve as a guide for the rehabilitation of the lake.
Related papers
- Integrating Boosted learning with Differential Evolution (DE) Optimizer: A Prediction of Groundwater Quality Risk Assessment in Odisha [0.0]
This study developed a machine learning-based predictive model to evaluate the Groundwater Quality Index (GWQI)
It has been achieved with the help of a hybrid machine learning model i.e. LCBoost Fusion.
arXiv Detail & Related papers (2025-02-25T07:47:41Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - Constructing a High Temporal Resolution Global Lakes Dataset via Swin-Unet with Applications to Area Prediction [1.7614751781649955]
Lakes provide a wide range of valuable ecosystem services, such as water supply, biodiversity habitats, and carbon sequestration.
The recently developed Global Lakes Area Database (GLAKES) has mapped over 3.4 million lakes worldwide.
This paper introduces an expanded lake database, GLAKES-Additional, which offers biennial delineations and area measurements for 152,567 lakes globally from 1990 to 2021.
arXiv Detail & Related papers (2024-08-20T13:17:07Z) - MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge [5.554201560484389]
Agricultural managed aquifer recharge (Ag-MAR) is proposed to recharge the aquifer by artificially flooding agricultural lands using surface water.
Current Ag-MAR scheduling does not take into account complex environmental factors such as weather and soil oxygen.
This paper proposes MARLP, the first end-to-end data-driven control system for Ag-MAR.
arXiv Detail & Related papers (2024-07-01T06:36:40Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
arXiv Detail & Related papers (2024-05-12T09:32:40Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - AquaFeL-PSO: A Monitoring System for Water Resources using Autonomous
Surface Vehicles based on Multimodal PSO and Federated Learning [0.0]
The preservation, monitoring, and control of water resources has been a major challenge in recent decades.
This paper proposes a water monitoring system using autonomous surface vehicles, equipped with water quality sensors.
arXiv Detail & Related papers (2022-11-28T10:56:12Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Probabilistic modeling of lake surface water temperature using a
Bayesian spatio-temporal graph convolutional neural network [55.41644538483948]
We propose to aggregate simulations of lake temperature at a certain depth together with a range of meteorological features.
This work demonstrates that the proposed model can deliver homogeneously good performance covering the whole lake surface.
Results are compared with a state-of-the-art Bayesian deep learning method.
arXiv Detail & Related papers (2021-09-27T09:19:53Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models [0.0]
We propose a novel water level extracting approach, which employs Sentinel-1 Synthetic Aperture Radar imagery and Digital Elevation Model data sets.
Experiments show that the algorithm achieved a low average error of 0.93 meters over three reservoirs globally.
arXiv Detail & Related papers (2020-12-11T18:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.