Topological Computation by non-Abelian Braiding in Classical Metamaterials
- URL: http://arxiv.org/abs/2502.16006v1
- Date: Fri, 21 Feb 2025 23:44:10 GMT
- Title: Topological Computation by non-Abelian Braiding in Classical Metamaterials
- Authors: Liyuan Chen, Matthew Fuertes, Bolei Deng,
- Abstract summary: We propose a realization of the one-dimensional computation Kitaev topological superconductor in classical mechanical metamaterials.<n>We demonstrate that the system's mid-gap vibrational modes termed Major zero modes (MZMs), accurately reproduce statistics predicted by quantum theory.
- Score: 0.5714553194279463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a realization of the one-dimensional Kitaev topological superconductor in classical mechanical metamaterials. By designing appropriate braiding protocols, we demonstrate that the system's mid-gap vibrational modes, termed classical Majorana zero modes (MZMs), accurately reproduce the braiding statistics predicted by quantum theory. Encoding four MZMs as a classical analog of a qubit, we implement all single-qubit Clifford gates through braiding, enabling the simulation of topological quantum computation in a classical system. Furthermore, we establish the system's topological protection by demonstrating its robustness against mechanical defects. This work provides a novel framework for exploring topological quantum computation using classical metamaterials and offers a pathway to realizing stable vibrational systems protected by topology.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Probing topological matter and fermion dynamics on a neutral-atom quantum computer [27.84599956781646]
We realize a digital quantum simulation architecture for two-dimensional fermionic systems based on reconfigurable atom arrays.
Results pave the way for digital quantum simulations of complex fermionic systems for materials science, chemistry, and high-energy physics.
arXiv Detail & Related papers (2025-01-30T18:32:23Z) - Exact Model Reduction for Continuous-Time Open Quantum Dynamics [0.0]
We consider finite-dimensional many-body quantum systems described by time-independent Hamiltonians and Markovian master equations.<n>We present a systematic method for constructing smaller-dimensional, reduced models that reproduce the time evolution of a set of initial conditions or observables of interest.
arXiv Detail & Related papers (2024-12-06T15:00:58Z) - Berry Phase and Topological Insights in a Qubit-Inspired Classical Two-Level Elastic Bit [0.0]
We show controlled accumulation of the Berry phase in a two-level elastic bit, achieved by manipulating coupled granules with external drivers.
A key achievement is the calculation of the Berry phase for various system states, revealing insights into the system's topological nature.
arXiv Detail & Related papers (2024-07-10T04:16:51Z) - Ground state-based quantum feature maps [17.857341127079305]
We introduce a quantum data embedding protocol based on the preparation of a ground state of a parameterized Hamiltonian.<n>We show that ground state embeddings can be described effectively by a spectrum with degree that grows rapidly with the number of qubits.
arXiv Detail & Related papers (2024-04-10T17:17:05Z) - Classical Chaos in Quantum Computers [39.58317527488534]
Current-day quantum processors, comprising 50-100 qubits, operate outside the range of quantum simulation on classical computers.
We demonstrate that the simulation of classical limits can be a potent diagnostic tool potentially mitigating this problem.
We find that classical and quantum simulations lead to similar stability metrics in systems with $mathcalO$ transmons.
arXiv Detail & Related papers (2023-04-27T18:00:04Z) - Estimating Patterns of Classical and Quantum Skyrmion States [0.0]
We show that for classical spin systems there is a whole pool of machine approaches allowing their accurate phase classification and quantitative description.
One needs to find the ways to imitate quantum skyrmions on near-term quantum computers.
arXiv Detail & Related papers (2023-04-05T03:26:57Z) - Unravelling quantum chaos using persistent homology [0.0]
Topological data analysis is a powerful framework for extracting useful topological information from complex datasets.
Recent work has shown its application for the dynamical analysis of classical dissipative systems.
We present a topological pipeline for characterizing quantum dynamics, which draws inspiration from the classical approach.
arXiv Detail & Related papers (2022-11-28T07:33:21Z) - Measuring quantum geometric tensor of non-Abelian system in
superconducting circuits [21.82634956452952]
We use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.
We reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
arXiv Detail & Related papers (2022-09-26T01:08:39Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.