論文の概要: Since Faithfulness Fails: The Performance Limits of Neural Causal Discovery
- arxiv url: http://arxiv.org/abs/2502.16056v1
- Date: Sat, 22 Feb 2025 03:20:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:06.889408
- Title: Since Faithfulness Fails: The Performance Limits of Neural Causal Discovery
- Title(参考訳): Since Faithfulness Fails: The Performance Limits of Neural Causal Discovery
- Authors: Mateusz Olko, Mateusz Gajewski, Joanna Wojciechowska, Mikołaj Morzy, Piotr Sankowski, Piotr Miłoś,
- Abstract要約: ニューラルネットワークは、既存の因果関係と既存の因果関係を確実に区別することはできない。
我々の実験では、現代の因果探索法で使われているニューラルネットワークは、地中真実のグラフを復元するのに必要な精度を欠いていることが明らかとなった。
- 参考スコア(独自算出の注目度): 1.8635507597668244
- License:
- Abstract: Neural causal discovery methods have recently improved in terms of scalability and computational efficiency. However, our systematic evaluation highlights significant room for improvement in their accuracy when uncovering causal structures. We identify a fundamental limitation: neural networks cannot reliably distinguish between existing and non-existing causal relationships in the finite sample regime. Our experiments reveal that neural networks, as used in contemporary causal discovery approaches, lack the precision needed to recover ground-truth graphs, even for small graphs and relatively large sample sizes. Furthermore, we identify the faithfulness property as a critical bottleneck: (i) it is likely to be violated across any reasonable dataset size range, and (ii) its violation directly undermines the performance of neural discovery methods. These findings lead us to conclude that progress within the current paradigm is fundamentally constrained, necessitating a paradigm shift in this domain.
- Abstract(参考訳): ニューラル因果探索法は近年,スケーラビリティと計算効率の面で改善されている。
しかし,本研究の体系的評価は,因果構造を明らかにする際の精度向上のための重要な余地を浮き彫りにしている。
ニューラルネットワークは、有限標本状態における既存の因果関係と存在しない因果関係を確実に区別することはできない。
我々の実験は、ニューラルネットワークが現代の因果探索のアプローチで使われているように、小さなグラフや比較的大きなサンプルサイズであっても、地下構造グラフの復元に必要な精度が欠如していることを明らかにした。
さらに、忠実性は重要なボトルネックであると見なす。
(i)妥当なデータセットサイズの範囲で違反される可能性があり、
(II)その違反は、ニューラルディスカバリー法の性能を直接損なう。
これらの結果から、現在のパラダイムの進歩は根本的に制約されており、この領域におけるパラダイムシフトを必要としている、という結論に至った。
関連論文リスト
- Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
本研究では,不確かさが勾配推定に及ぼす影響について検討した。
一般の過度にパラメータ化された定式化は、損失関数が最小化される集合の外側に配置されるスプリアス平衡の集合を導入することを示す。
論文 参考訳(メタデータ) (2023-05-17T02:26:34Z) - Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition [0.0]
ニューロモルフィックハードウェアとイベントベースのセンサーを組み合わせたスパイクニューラルネットワークは、エッジにおける低レイテンシと低パワー推論への関心が高まっている。
スパイキングニューロンにおけるシナプスおよび膜漏れの影響について検討する。
論文 参考訳(メタデータ) (2022-11-14T21:34:02Z) - VICause: Simultaneous Missing Value Imputation and Causal Discovery with
Groups [12.055670392677248]
提案するVICauseは,難読値の計算と因果発見をディープラーニングで効率的に行うための新しい手法である。
提案手法は,不備な値計算と因果発見の両方において,人気や近年のアプローチと比較して,性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-10-15T17:35:20Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Bayesian Neural Networks [0.0]
ニューラルネットワークによる予測におけるエラーを原理的に得る方法を示し、これらのエラーを特徴付ける2つの方法を提案する。
さらに、これらの2つのメソッドが実際に実施される際に、重大な落とし穴を持つ方法についても説明します。
論文 参考訳(メタデータ) (2020-06-02T09:43:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。