Heterogeneous Multi-Agent Bandits with Parsimonious Hints
- URL: http://arxiv.org/abs/2502.16128v1
- Date: Sat, 22 Feb 2025 07:46:41 GMT
- Title: Heterogeneous Multi-Agent Bandits with Parsimonious Hints
- Authors: Amirmahdi Mirfakhar, Xuchuang Wang, Jinhang Zuo, Yair Zick, Mohammad Hajiesmaili,
- Abstract summary: We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms.<n>In this framework, each of the $M$ agents has a unique reward distribution over $K$ arms, and in $T$ rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm.<n>The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret.
- Score: 12.709437751500353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the $M$ agents has a unique reward distribution over $K$ arms, and in $T$ rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving $O(M^4K)$ regret with $O(MK\log T)$ adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding $O(M^3K^2)$ regret with $O(M^3K\log T)$ hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations.
Related papers
- Continuous K-Max Bandits [54.21533414838677]
We study the $K$-Max multi-armed bandits problem with continuous outcome distributions and weak value-index feedback.<n>This setting captures critical applications in recommendation systems, distributed computing, server scheduling, etc.<n>Our key contribution is the computationally efficient algorithm DCK-UCB, which combines adaptive discretization with bias-corrected confidence bounds.
arXiv Detail & Related papers (2025-02-19T06:37:37Z) - An Algorithm for Fixed Budget Best Arm Identification with Combinatorial Exploration [3.9901365062418312]
We consider the best arm identification problem in the $K-$armed bandit framework.<n>Agent is allowed to play a subset of arms at each time slot instead of one arm.<n>We propose an algorithm that constructs $log K$ groups and performs a likelihood ratio test to detect the presence of the best arm.
arXiv Detail & Related papers (2025-02-03T15:10:08Z) - Optimal Multi-Objective Best Arm Identification with Fixed Confidence [62.36929749450298]
We consider a multi-armed bandit setting in which each arm yields an $M$-dimensional vector reward upon selection.<n>The end goal is to identify the best arm of em every objective in the shortest (expected) time subject to an upper bound on the probability of error.<n>We propose an algorithm that uses the novel idea of em surrogate proportions to sample the arms at each time step, eliminating the need to solve the max-min optimisation problem at each step.
arXiv Detail & Related papers (2025-01-23T12:28:09Z) - Cooperative Multi-Agent Constrained Stochastic Linear Bandits [2.099922236065961]
A network of $N$ agents communicate locally to minimize their collective regret while keeping their expected cost under a specified threshold $tau$.
We propose a safe distributed upper confidence bound algorithm, so called textitMA-OPLB, and establish a high probability bound on its $T$-round regret.
We show that our regret bound is of order $ mathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)
arXiv Detail & Related papers (2024-10-22T19:34:53Z) - A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.<n>We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.<n>Our refined analysis uncovers a novel bound on the speed at which the average number of arm pulls of our algorithm converges to the fundamental limit as $delta$ vanishes.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Representative Arm Identification: A fixed confidence approach to identify cluster representatives [7.459521930846415]
We study the representative arm identification problem in the multi-armed bandits (MAB) framework.
The RAI problem covers as special cases several well-studied MAB problems such as identifying the best arm or any $M$ out of the top $K$.
We propose two algorithms, based on the idea of confidence intervals, and provide high probability upper bounds on their sample complexity.
arXiv Detail & Related papers (2024-08-26T11:47:52Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Distributed Bandits with Heterogeneous Agents [38.90376765616447]
This paper tackles a multi-agent bandit setting where $M$ agents cooperate together to solve the same instance of a $K$-armed bandit problem.
We propose two learning algorithms, ucbo and AAE.
We prove that both algorithms achieve order-optimal regret, which is $Oleft(sum_i:tildeDelta_i>0 log T/tildeDelta_iright)$, where $tildeDelta_i$ is the minimum suboptimality gap between the reward mean of
arXiv Detail & Related papers (2022-01-23T20:04:15Z) - Combinatorial Bandits without Total Order for Arms [52.93972547896022]
We present a reward model that captures set-dependent reward distribution and assumes no total order for arms.
We develop a novel regret analysis and show an $Oleft(frack2 n log Tepsilonright)$ gap-dependent regret bound as well as an $Oleft(k2sqrtn T log Tright)$ gap-independent regret bound.
arXiv Detail & Related papers (2021-03-03T23:08:59Z) - Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy [71.17938026619068]
We study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous.
We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy.
We show that our algorithm has a regret guarantee of $O(ksqrt(A-k+1)T log (|mathcalF|T))$.
arXiv Detail & Related papers (2021-02-15T19:10:52Z) - Multi-Armed Bandits with Dependent Arms [18.81667618369821]
We study a variant of the classical multi-armed bandit problem (MABP) which we call as Multi-Armed Bandits with dependent arms.
Multiple arms are grouped together to form a cluster, and the reward distributions of arms belonging to the same cluster are known functions of an unknown parameter that is a characteristic of the cluster.
We develop learning algorithms based on the UCB principle which utilize these additional side observations appropriately while performing exploration-exploitation trade-off.
arXiv Detail & Related papers (2020-10-13T14:00:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.