論文の概要: Maybe I Should Not Answer That, but... Do LLMs Understand The Safety of Their Inputs?
- arxiv url: http://arxiv.org/abs/2502.16174v1
- Date: Sat, 22 Feb 2025 10:31:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:43.865182
- Title: Maybe I Should Not Answer That, but... Do LLMs Understand The Safety of Their Inputs?
- Title(参考訳): LLMは入力の安全性を理解しているのか?
- Authors: Maciej Chrabąszcz, Filip Szatkowski, Bartosz Wójcik, Jan Dubiński, Tomasz Trzciński,
- Abstract要約: このような一般化のための既存手法について検討し、それらが不十分であることを示す。
性能劣化を回避し、安全な性能を維持するために、我々は2段階のフレームワークを提唱する。
最後のトークンに対する最後の隠れ状態は、堅牢なパフォーマンスを提供するのに十分であることがわかった。
- 参考スコア(独自算出の注目度): 0.836362570897926
- License:
- Abstract: Ensuring the safety of the Large Language Model (LLM) is critical, but currently used methods in most cases sacrifice the model performance to obtain increased safety or perform poorly on data outside of their adaptation distribution. We investigate existing methods for such generalization and find them insufficient. Surprisingly, while even plain LLMs recognize unsafe prompts, they may still generate unsafe responses. To avoid performance degradation and preserve safe performance, we advocate for a two-step framework, where we first identify unsafe prompts via a lightweight classifier, and apply a "safe" model only to such prompts. In particular, we explore the design of the safety detector in more detail, investigating the use of different classifier architectures and prompting techniques. Interestingly, we find that the final hidden state for the last token is enough to provide robust performance, minimizing false positives on benign data while performing well on malicious prompt detection. Additionally, we show that classifiers trained on the representations from different model layers perform comparably on the latest model layers, indicating that safety representation is present in the LLMs' hidden states at most model stages. Our work is a step towards efficient, representation-based safety mechanisms for LLMs.
- Abstract(参考訳): LLM(Large Language Model)の安全性の確保は重要であるが、現在ではほとんどのケースで使われている手法は、モデルの性能を犠牲にして安全性を高めたり、適応分布外のデータに悪影響を与える。
このような一般化のための既存手法について検討し、それらが不十分であることを示す。
意外なことに、普通のLLMでさえ、安全でないプロンプトを認識する一方で、安全でない応答を生成する可能性がある。
性能劣化を回避し、安全な性能を維持するために、我々はまず軽量な分類器を通して安全でないプロンプトを識別し、そのようなプロンプトのみに「安全な」モデルを適用する2段階のフレームワークを提案する。
特に,安全検知器の設計についてより詳細に検討し,異なる分類器アーキテクチャの使用と促進技術について検討する。
興味深いことに、最後のトークンの最終的な隠蔽状態は、悪質なプロンプト検出において良好に動作しながら、良質なデータに対する偽陽性を最小限に抑え、堅牢なパフォーマンスを提供するのに十分である。
さらに、異なるモデル層からの表現に基づいて訓練された分類器が、最新のモデル層上で比較可能であり、ほとんどのモデルステージにおいて、LLMの隠れ状態に安全表現が存在することを示す。
我々の研究は、LLMの効率的な表現に基づく安全メカニズムへの一歩です。
関連論文リスト
- HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States [17.601328965546617]
本研究は,LVLMが内的アクティベーションにおける安全性関連信号を本質的にエンコードしているかどうかを考察する。
その結果,LVLMは安全でないプロンプトを処理する際に,異なる活性化パターンを示すことが明らかとなった。
HiddenDetectは、内部モデルのアクティベーションを活用して安全性を高める、新しいチューニング不要のフレームワークである。
論文 参考訳(メタデータ) (2025-02-20T17:14:34Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.476222570886483]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - Safety Layers in Aligned Large Language Models: The Key to LLM Security [43.805905164456846]
整列 LLM の内部パラメータは、微調整攻撃を受けた場合のセキュリティ劣化に対して脆弱である。
我々の研究は、パラメータレベルでのLLMの整列化におけるセキュリティのメカニズムを明らかにし、モデルの中央に小さな連続した層を識別する。
そこで本稿では, 安全部分調整(SPPFT)方式を提案する。
論文 参考訳(メタデータ) (2024-08-30T04:35:59Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
悪意のある命令から脅威を守るために、LLM(Large Language Models)には安全アライメントが不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - ShieldLM: Empowering LLMs as Aligned, Customizable and Explainable Safety Detectors [90.73444232283371]
ShieldLMは、LLM(Large Language Models)の安全性検出装置で、一般的な安全基準に準拠している。
ShieldLMは4つのテストセットにまたがる強力なベースラインを超えており、優れたカスタマイズ性と説明可能性を示している。
論文 参考訳(メタデータ) (2024-02-26T09:43:02Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
本研究では,複数質問とオープンエンド質問の相違点について検討した。
ジェイルブレイク攻撃パターンの研究にインスパイアされた我々は、これが不一致の一般化によって引き起こされたと論じている。
論文 参考訳(メタデータ) (2023-11-10T08:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。