OrderSum: Semantic Sentence Ordering for Extractive Summarization
- URL: http://arxiv.org/abs/2502.16180v1
- Date: Sat, 22 Feb 2025 10:51:04 GMT
- Title: OrderSum: Semantic Sentence Ordering for Extractive Summarization
- Authors: Taewan Kwon, Sangyong Lee,
- Abstract summary: OrderSum semantically orders sentences within an extractive summary.<n> OrderSum achieves a ROUGE-L score of 30.52 on CNN/DailyMail, outperforming the previous state-of-the-art model by a large margin of 2.54.
- Score: 0.8287206589886881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are two main approaches to recent extractive summarization: the sentence-level framework, which selects sentences to include in a summary individually, and the summary-level framework, which generates multiple candidate summaries and ranks them. Previous work in both frameworks has primarily focused on improving which sentences in a document should be included in the summary. However, the sentence order of extractive summaries, which is critical for the quality of a summary, remains underexplored. In this paper, we introduce OrderSum, a novel extractive summarization model that semantically orders sentences within an extractive summary. OrderSum proposes a new representation method to incorporate the sentence order into the embedding of the extractive summary, and an objective function to train the model to identify which extractive summary has a better sentence order in the semantic space. Extensive experimental results demonstrate that OrderSum obtains state-of-the-art performance in both sentence inclusion and sentence order for extractive summarization. In particular, OrderSum achieves a ROUGE-L score of 30.52 on CNN/DailyMail, outperforming the previous state-of-the-art model by a large margin of 2.54.
Related papers
- Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization [48.57273563299046]
We propose the task of Stepwise Summarization, which aims to generate a new appended summary each time a new document is proposed.
The appended summary should not only summarize the newly added content but also be coherent with the previous summary.
We show that SSG achieves state-of-the-art performance in terms of both automatic metrics and human evaluations.
arXiv Detail & Related papers (2024-06-08T05:37:26Z) - RankSum An unsupervised extractive text summarization based on rank
fusion [0.0]
We propose Ranksum, an approach for extractive text summarization of single documents.
The Ranksum obtains the sentence saliency rankings corresponding to each feature in an unsupervised way.
We evaluate our approach on publicly available summarization datasets CNN/DailyMail and DUC 2002.
arXiv Detail & Related papers (2024-02-07T22:24:09Z) - On Context Utilization in Summarization with Large Language Models [83.84459732796302]
Large language models (LLMs) excel in abstractive summarization tasks, delivering fluent and pertinent summaries.
Recent advancements have extended their capabilities to handle long-input contexts, exceeding 100k tokens.
We conduct the first comprehensive study on context utilization and position bias in summarization.
arXiv Detail & Related papers (2023-10-16T16:45:12Z) - DiffuSum: Generation Enhanced Extractive Summarization with Diffusion [14.930704950433324]
Extractive summarization aims to form a summary by directly extracting sentences from the source document.
This paper proposes DiffuSum, a novel paradigm for extractive summarization.
Experimental results show that DiffuSum achieves the new state-of-the-art extractive results on CNN/DailyMail with ROUGE scores of $44.83/22.56/40.56$.
arXiv Detail & Related papers (2023-05-02T19:09:16Z) - Text Summarization with Oracle Expectation [88.39032981994535]
Extractive summarization produces summaries by identifying and concatenating the most important sentences in a document.
Most summarization datasets do not come with gold labels indicating whether document sentences are summary-worthy.
We propose a simple yet effective labeling algorithm that creates soft, expectation-based sentence labels.
arXiv Detail & Related papers (2022-09-26T14:10:08Z) - Summarization Programs: Interpretable Abstractive Summarization with
Neural Modular Trees [89.60269205320431]
Current abstractive summarization models either suffer from a lack of clear interpretability or provide incomplete rationales.
We propose the Summarization Program (SP), an interpretable modular framework consisting of an (ordered) list of binary trees.
A Summarization Program contains one root node per summary sentence, and a distinct tree connects each summary sentence to the document sentences.
arXiv Detail & Related papers (2022-09-21T16:50:22Z) - A Survey on Neural Abstractive Summarization Methods and Factual
Consistency of Summarization [18.763290930749235]
summarization is the process of shortening a set of textual data computationally, to create a subset (a summary)
Existing summarization methods can be roughly divided into two types: extractive and abstractive.
An extractive summarizer explicitly selects text snippets from the source document, while an abstractive summarizer generates novel text snippets to convey the most salient concepts prevalent in the source.
arXiv Detail & Related papers (2022-04-20T14:56:36Z) - Controllable Abstractive Dialogue Summarization with Sketch Supervision [56.59357883827276]
Our model achieves state-of-the-art performance on the largest dialogue summarization corpus SAMSum, with as high as 50.79 in ROUGE-L score.
arXiv Detail & Related papers (2021-05-28T19:05:36Z) - Discrete Optimization for Unsupervised Sentence Summarization with
Word-Level Extraction [31.648764677078837]
Automatic sentence summarization produces a shorter version of a sentence, while preserving its most important information.
We model these two aspects in an unsupervised objective function, consisting of language modeling and semantic similarity metrics.
Our proposed method achieves a new state-of-the art for unsupervised sentence summarization according to ROUGE scores.
arXiv Detail & Related papers (2020-05-04T19:01:55Z) - Extractive Summarization as Text Matching [123.09816729675838]
This paper creates a paradigm shift with regard to the way we build neural extractive summarization systems.
We formulate the extractive summarization task as a semantic text matching problem.
We have driven the state-of-the-art extractive result on CNN/DailyMail to a new level (44.41 in ROUGE-1)
arXiv Detail & Related papers (2020-04-19T08:27:57Z) - At Which Level Should We Extract? An Empirical Analysis on Extractive
Document Summarization [110.54963847339775]
We show that unnecessity and redundancy issues exist when extracting full sentences.
We propose extracting sub-sentential units based on the constituency parsing tree.
arXiv Detail & Related papers (2020-04-06T13:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.