論文の概要: Machine Learning Framework for Early Power, Performance, and Area Estimation of RTL
- arxiv url: http://arxiv.org/abs/2502.16203v1
- Date: Sat, 22 Feb 2025 12:12:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:21.185709
- Title: Machine Learning Framework for Early Power, Performance, and Area Estimation of RTL
- Title(参考訳): RTLの初期パワー, 性能, 面積推定のための機械学習フレームワーク
- Authors: Anindita Chattopadhyay, Vijay Kumar Sutrakar,
- Abstract要約: 本稿では,ハードウェア記述言語(HDL)コードから直接,電力,性能,面積(PPA)メトリクスを早期に推定する合成前フレームワークを提案する。
提案したモデルはRTLと後合成設計を橋渡しし、重要な指標を正確に予測するのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A critical stage in the evolving landscape of VLSI design is the design phase that is transformed into register-transfer level (RTL), which specifies system functionality through hardware description languages like Verilog. Generally, evaluating the quality of an RTL design demands full synthesis via electronic design automation (EDA) tool is time-consuming process that is not well-suited to rapid design iteration and optimization. Although recent breakthroughs in machine Learning (ML) have brought early prediction models, these methods usually do not provide robust and generalizable solutions with respect to a wide range of RTL designs. This paper proposes a pre-synthesis framework that makes early estimation of power, performance and area (PPA) metrics directly from the hardware description language (HDL) code making direct use of library files instead of toggle files. The proposed framework introduces a bit-level representation referred to as the simple operator graph (SOG), which uses single-bit operators to generate a generalized and flexible structure that closely mirrors the characteristics of post synthesis design. The proposed model bridges the RTL and post-synthesis design, which will help in precisely predicting key metrics. The proposed tree-based ML framework shows superior predictive performance PPA estimation. Validation is carried out on 147 distinct RTL designs. The proposed model with 147 different designs shows accuracy of 98%, 98%, and 90% for WNS, TNS and power, respectively, indicates significant accuracy improvements relative to state-of-the-art methods.
- Abstract(参考訳): VLSI設計の進化期における重要な段階は、Verilogのようなハードウェア記述言語を通じてシステム機能を指定するレジスタ転送レベル(RTL)に変換される設計段階である。
一般に、RTL設計の品質を評価するためには、電子設計自動化(EDA)ツールによる完全な合成が必要である。
最近の機械学習(ML)のブレークスルーは早期予測モデルをもたらしたが、これらの手法は通常、幅広いRTL設計に関して堅牢で一般化可能なソリューションを提供しない。
本稿では,ライブラリファイルを直接利用するハードウェア記述言語(HDL)コードから直接,電力,性能,面積(PPA)メトリクスを早期に推定する合成前フレームワークを提案する。
提案フレームワークでは、単一ビット演算子を用いて、ポスト合成設計の特徴を忠実に反映した一般化されたフレキシブルな構造を生成する、単純な演算子グラフ(SOG)と呼ばれるビットレベル表現を導入している。
提案したモデルはRTLと後合成設計を橋渡しし、重要な指標を正確に予測するのに役立つ。
The proposed tree-based ML framework shows superior predictive performance PPA estimation。
検証は147種類のRTL設計で行われている。
提案した147の異なる設計モデルでは, WNS, TNS, 電力の精度が98%, 98%, 90%であった。
関連論文リスト
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTM) には、潜在空間における明示的な事前モデルに従う明示的な潜在思考ベクトルが含まれている。
LTMは従来のLLMを超える拡張次元を持ち、構造化された設計空間を提供する。
LTMは従来の自己回帰モデルや離散拡散モデルよりも、検証の難易度やゼロショット言語モデリングにおいて著しく優れている。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation [34.37154877681809]
本研究は,HDLコードから直接回路品質を推定するための予測ネットワークを用いて,大規模言語モデル(LLM)を拡張することを提案する。
性能を向上させるために、Look-Up Table (LUT)グラフでトレーニングされたグラフニューラルネットワーク(GNN)の埋め込みを使用してモデルを正規化する。
提案手法は,既存のベンチマークOpenABCDにおけるRTLレベルの推定手法と比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-30T04:20:10Z) - Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
LSOformerは、自動回帰トランスフォーマーモデルと予測SSLを利用して、結果の質の軌道(QoR)を予測する新しいアプローチである。
LSOformerは、クロスアテンションモジュールを統合して、回路グラフと最適化シーケンスからの洞察をマージし、QoRメトリクスの予測精度を向上させる。
論文 参考訳(メタデータ) (2024-09-16T18:45:07Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
我々はvisiOn-Language mOdelingのための単一変換器SOLOを提案する。
SOLOのような統一された単一トランスフォーマーアーキテクチャは、LVLMにおけるこれらのスケーラビリティ上の懸念に効果的に対処する。
本稿では,オープンソースの7B LVLMであるSOLOの開発のための,最初のオープンソーストレーニングレシピを紹介する。
論文 参考訳(メタデータ) (2024-07-08T22:40:15Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - Hybrid Graph Models for Logic Optimization via Spatio-Temporal
Information [15.850413267830522]
EDAにおけるプロダクション対応MLアプリケーションを妨げるおもな懸念点は、正確性要件と一般化能力である。
本稿では,高精度なQoR推定に対するハイブリッドグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
3.3百万のデータポイントの評価によると、トレーニング中に見つからないデザインの絶対パーセンテージエラー(MAPE)は1.2%と3.1%に満たない。
論文 参考訳(メタデータ) (2022-01-20T21:12:22Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesisは、アプリケーション固有の高速プロトタイピングのためのソリューションである。
本稿では,加速性能とハードウェアコストを共同で予測するグラフニューラルネットワークHLSを提案する。
提案手法は,一般的なシミュレータと同等の精度で予測できることを示す。
論文 参考訳(メタデータ) (2021-11-29T18:17:45Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。